
Sandia National Laboratories is a multimission laboratory 
managed and operated by National Technology and Engineering 

Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell 
International Inc., for the U.S. Department of Energy’s National 

Nuclear Security Administration under contract DE-NA0003525. 

 

 
 
 
 
 
 
 
 
 
 

 

Predictive Science Academic 
Alliance Program (PSAAP) 
 
Formal Methods:  
Improving Assurance of  
Cyber-Physical Systems 
 

Karla Vanessa Morris Wright, Robert Armstrong, Jon Aytac, Noah Evans, 
Raheel Mahmood, Philip Johnson-Freyd, Jackson Mayo and Blake Rawlings 
 
 

July 2023 

 
 



 

2 

  



 

3 

CONTENTS 

1. Introduction ........................................................................................................................................... 4 

2. Current Capabilities ............................................................................................................................... 6 
2.1. Software Formal Verification ...................................................................................................... 6 
2.2. Hardware Formal Verification .................................................................................................... 6 

3. Research and Development .................................................................................................................. 7 
3.1. Research Directions ..................................................................................................................... 8 

LIST OF FIGURES 

Figure 1: NW digital component representations corresponding to different abstraction levels in 
the digital stack ....................................................................................................................................... 4 

Figure 2: Layers in a typical digital controller design.  Each abstraction layer is proven consistent 
with the layer above it.  The arrows point in the direction of proof obligation of consistency. ..... 7 

  

  



 

4 

1. INTRODUCTION 

Nuclear weapons (NW) require a flexible, agile, and resilient life cycle as we must address an ever-
changing threat environment.  The NW adaptability needs are being addressed by incorporating 
more digital components into the systems. As a result, digital assurance must be more closely 
integrated with our design, implementation, qualification, and surveillance processes. The complexity 
introduced by the interaction of these digital components, and the digital nature of said components, 
demands different approaches for the verification and validation (V&V) of their design and 
implementation. While testing and simulation of the behaviors related to reducible systems (e.g. 
aerodynamics, or heat transfer) is sufficient, we cannot hope to understand digital systems by testing 
alone.  In particular, the “always/never” requirements so essential to high-consequence systems 
can’t be guaranteed by testing, but must be reasoned about mathematically. Traditional V&V 
activities must be complemented with formal methods, which provide the mathematical foundations 
to analyze the digital systems of interest and exhaustively verify what it is supposed to do, and 
especially what it is not supposed to do. Indeed, formal verification can be used anytime there are 
complex interactions between hardware/software and other hardware/software, such as co-design 
of dataflow accelerators in exascale HPC systems. 

 

Figure 1 shows some of the different representations a digital component can take. Each 
representation is a level of abstraction used in the design and implementation process. To ensure the 
correctness of the NW systems, each successive abstraction layer must be shown to be consistent 
with itself and the previous layer. “always/never” guarantees may then be reasoned about at 
whichever layer of abstraction makes them most tractable. As the evidence package for the 
correctness of the component includes mathematical correspondence between each of these 
abstractions, proofs of behaviors in the higher-level abstraction (e.g. executable specification) are 
preserved by the lower (e.g. C source code). 

 

 

Figure 1: NW digital component representations corresponding to different abstraction levels in 
the digital stack 

 
 
Digital assurance of NW systems necessitates not only the certification of correctness of each of its 
components, but also guarantees that system is correct with respect to its specification. The goal is 
to develop theory and capabilities needed to support a workflow that enables rigorously deriving, 
specifying, and analyzing NW systems and to provide evidence that their requirements are upheld 
throughout its digital stack. Refinement theory must be applied to check that each component 
design correctly implements its specification, and that the entire design will not violate any system-
level requirements, including always/never requirements. The workflow should enable the 
construction of a fully verifiable system stack, with proven correct components, and one Q.E.D. 
including evidence of mathematical correspondence between each abstraction layer of the complete 



 

5 

design (from the high-level system design to individual component design, to implemented software 
and hardware designs for individual digital components). The collection of formal verification 
artifacts (including executable specifications, logical formulas representing formally verifiable 
requirements, model checking results, machine checkable proofs, etc.) will contribute to the 
evidence package corroborating the digital assurance case made for the qualification of the NW 
system and its components. 



 

6 

2. CURRENT CAPABILITIES 

2.1. Software Formal Verification 

Formal verification of firmware for NW components begins with the manual translation of a word 
document system specification into state machine specification by a formal verification analyst [1]. 
The specification, expressed as a simulatable Simulink/Stateflow diagram, may then be synthesized 
into our own specification language, QSpec. The specification is then translated (using our QQ 
compiler) into different languages to be used by several analysis tools, including NuSMV, and 
Frama-C. We refer to this logical specification as the "Executable Specification" because it is, among 
other things, simulatable. 
 
In addition to the System specification there is a more detailed device software specification also 
written in Word and used to create the software implementation. This specification is also converted 
into Simulink/Stateflow and then to QSpec. An important part of the workflow is proving that the 
device executable specification is indeed a refinement of the System executable specification 
formally and mathematically. Right now, we use both NuSMV and MC3 (a Sandia-developed model 
checker) to accomplish this proof. 
 
The PRT specification must be shown to be in correspondence with the C code implementation. 
The executable specification as QSpec is converted to the C assertion language ACSL (ANSI/ISO C 
Specification Language) which then can be proven against the C code using Frama-C. A certified 
compiler, CompCert, is used to guarantee that the binary corresponds to (refines) the C code. 
 
Each layer of the stack is proven to the layer before to provide an unbroken chain of evidence that 
the implementation is everything the specification says it is. 
 
Other approaches used in the formal verification of firmware involve the construction of a Coq 
proof assistant detailed functional specification for the behavior of the component. The word 
document requirements are formalized as properties about the functional specification, and these are 
proven in Coq. The C code implementing the firmware is then proven to be in correspondence with 
the functional specification using the Verified Software Toolchain (VST), a logic embedded into 
Coq which itself is proven sound against CompCert's specification of the C language. 
 

2.2. Hardware Formal Verification 

Because the certification requirements are so rigorous, System On a Chip (SOC) are fabricated in a 
special-purpose foundry, usually at a fairly coarse feature size for radiation resistance, limiting the 
SOC to a fairly low clock speed.  Full processor specifications for the system AXI bus and RISC-V 
(next-gen processor) implement refinement by showing that for all possible behaviors the 
specification (written in Verilog) matches the implementation. Much of the heavy lifting comes from 
making sure that these specifications are complete and free of bugs.   
 
Other peripherals related to the function of the controller are specified by designers and require an 
abstraction/refinement stack like the software formal verification that is yet unwritten.  In the 
interim, the handwritten Systems specification is translated by hand directly to System Verilog 
Assertions (SVA), finite state machines that can be checked against the synthesizable design using 
model checking or constrained random testing to prove properties about the system. 



 

7 

3. RESEARCH AND DEVELOPMENT 

It cannot be over-emphasized that the verification of the digital design relies heavily on the lucidity 
and the transparency of the design itself. The exact design morphology and approach must 
accommodate the verification approach.  An arbitrary verification technique on an arbitrary design is 
doomed to failure (formally: is undecidable). Design constraints/guidelines that can be formalized 
and provided to the implementation teams are of interest as they should contribute to the creation 
of a successful design that can be successfully verified. 

 

In general, tools, toolchains, and methodologies are sought to support ergonomic constructions and 
verification of every representation at every level of the design process (e.g., systems level, 
component specification level, component implementation level, software implementation level, 
hardware implementation level).  Even though the control systems in question are fairly small by 
industrial standards, they are large when considering the very large and strict requirements space that 
NW endemic to NW. 

 

Figure 2: Layers in a typical digital controller design.  Each abstraction layer is proven consistent 
with the layer above it.  The arrows point in the direction of proof obligation of consistency. 



 

8 

3.1. Research Directions 

• Novel theories of abstraction/refinement in support of scalability and workability of 
formal co-design.   Novel approaches to modeling trace-inclusion would be welcome, but  
there are security and reliability properties requiring still more powerful notions of 
observational equivalence and refinement.   To these ends, we will need new theories of 
abstract interpretation, new program logics, and new modes of compositional reasoning.  

• Methodology and tools are required to ensure that the overall System Specification is 
self-consistent.  For a complex system, like those we have in the NW space, it is harder 
than not to create a specification free from deadlocks and race conditions. 

• Methodology and tools are required to ensure Component Specifications are consistent 
with the overall System Specification.  Ideally these would employ common tools that 
engineers already use to create specifications and would constrain engineers (with as little 
pain as possible) to derive only Component Specifications that are consistent with System 
Specification. 

• Methodology and tools are required to prove Component-level Specifications to 
implementation code.   This can include partial solutions that involve SMT provers, proof 
assistants, etc., automated methods for deriving simulation maps, and generalized proof 
systems that utilize any of these, or none of these. 

• Methodologies and tools that enable Code synthesis of Component Specifications to 
implementations.  Even at this, the generated implementation code is unlikely to stand into 
the final product, since alterations necessitated by performance, size, and other constraints 
are inevitable.  Thus any proposed method must accommodate proof repair in the altered 
code. 

• The Compiler is singled-out a separate entity, but in fact is several separate stages, 
all of which want verification.   While the Compcert compiler is formally proven to the 
back-end ISA, there is no corresponding guarantees for the linker, preprocessor, or libc. 

• Because of scalability concerns, automated proof systems that provide a proof 
certificate/ counter examples will help the proof case for NW immensely.   Much of the 
motivation for doing formal analysis in the first place is to provide evidence that 
requirements have been met, proof certificates are exactly that.  Counterexamples provide a 
strong hint to the practitioner of what is wrong with their design, or model. 

• The advent of quantum computers mean we can't just reuse the cryptography from previous 
designs.  Work that advances the art of verifying "post quantum" cryptography 
algorithms is welcome. 

• Performance and cost constraints strongly suggest that we must use unverified and/or 
untrusted components (e.g. COTS) in composite systems but still provide high 
assurance.  Research that incorporates formal verification and untrusted components that 
achieves a digitally assured result are also sought. 

• Enable analysis and identification of vulnerabilities in existing high-consequence 
systems through application of model learning techniques for automated construction 
models corresponding to legacy codes. 

• Application of machine learning techniques to enable certified compiler optimization for 
performance gains with correctness guarantees. 



 

9 

REFERENCES 

[1] Samuel D. Pollard, Robert C. Armstrong, John Bender, Geoffrey C. Hulette, Raheel S. 
Mahmood, Karla Morris, Blake C. Rawlings, and Jon M. Aytac. 2022. Q: A Sound 
Verification Framework for Statecharts and Their Implementations. In Proceedings of 
the 8th ACM SIGPLAN International Workshop on Formal Techniques for Safety-
Critical Systems (FTSCS 2022). Association for Computing Machinery, New York, NY, 
USA, 16–26. https://doi.org/10.1145/3563822.3568014 

 

https://doi.org/10.1145/3563822.3568014

	Contents
	List of Figures
	1. Introduction
	2. Current Capabilities
	2.1. Software Formal Verification
	2.2. Hardware Formal Verification

	3. Research and Development
	3.1. Research Directions

	References

