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We are at a transition point in HPC

Distributed Memory Era
GFLOP/s - TFLOP/s – PFLOP/s

Vector Era
MFLOP/s - GFLOP/s

• Parallelism through 
vector processors.

• Codes often written at 
very low level to make 
optimal use of hardware.

• Parallelism through MPI.

• Using an optimal 
parallel algorithm was 
critical to avoid 
duplication of work or 
unnecessary 
communication.

• Once distributed, code 
could be treated serially.

10s to 100s of cores 1000s of cores 104 to 106 cores

• For the most part, an MPI 
code ran anywhere.  For best 
performance, key kernels 
could be tuned.

• As CPU frequencies stopped 
increasing, parallelism 
became more extreme and 
specialized hardware more 
common.

1980s 1990s 2000s 2010s



3

We are at a transition point in HPC

2010s 2020s

Heterogeneity is the new reality

• Computational horsepower has 
significantly outpaced memory 
capacity and speed.

• Separate memory spaces add 
complexity, and can cause 
performance issues (e.g. NUMA) or 
errors if not handled correctly.

• Performance or portability?

• Refactoring an existing code is a lot of 
work!  You really don’t want to have to 
do it again in ten years.

Heterogeneous Era
PFLOP/s - EFLOP/s

• CPUs + accelerators with separate 
memory spaces to start, unclear what 
else will join the fray.

• Massive fine-grained parallelism 
required.

• Programming model has to match the 
architecture.

• Architectural landscape is changing 
rapidly, with an unclear future.
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DOE HPC Roadmap to Exascale Systems

LLNL
IBM/NVIDIA

ANL
IBM BG/Q

ORNL
Cray/AMD/NVIDIA

LBNL
HPE/AMD/NVIDIA

LANL/SNL
HPE/Intel

ANL
Intel/HPE

ORNL
HPE/AMD

LLNL
HPE/AMD

LANL/SNL
Cray/Intel  Xeon/KNL

FY 2012 FY 2016 FY 2018 FY 2021

ORNL
IBM/NVIDIA

LLNL
IBM BG/Q

Sequoia

Cori

Trinity

ThetaMira

Titan Summit

ANL
Cray/Intel KNL

LBNL
Cray/Intel  Xeon/KNL

Sierra

FY 2023FY 2022

Exascale 
Systems

Version 2.0

de
co

m
m

is
si

on
ed Aurora

ANL
HPE/AMD/NVIDIA

Polaris
To this point, only 
NVIDIA GPUs

AMD, Intel and 
NVIDIA GPUs!
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Why heterogeneous computing is hard

• Data movement is now expensive 
relative to compute.  Parallel 
algorithms need to be written to 
minimize transfers.  

• Having multiple memory spaces 
requires careful bookkeeping.  
Even hardware-unified memory is 
not without pitfalls.

Frontier compute node
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Performance on current and next-gen HPC architectures requires 
effective use of accelerators

FLOPS by device

<latexit sha1_base64="4W26H14gZJGSDfIeIqIWOMNZ0W4=">AAAB7HicbVBNSwMxEJ31s9avqkcvwVLwVHZLqXqRghePFdy20C4lm2bb0CS7JFmhLP0NXjwo4tUf5M1/Y9ruQVsfDDzem2FmXphwpo3rfjsbm1vbO7uFveL+weHRcenktK3jVBHqk5jHqhtiTTmT1DfMcNpNFMUi5LQTTu7mfueJKs1i+WimCQ0EHkkWMYKNlfzbm0a/MiiV3aq7AFonXk7KkKM1KH31hzFJBZWGcKx1z3MTE2RYGUY4nRX7qaYJJhM8oj1LJRZUB9ni2BmqWGWIoljZkgYt1N8TGRZaT0VoOwU2Y73qzcX/vF5qousgYzJJDZVkuShKOTIxmn+OhkxRYvjUEkwUs7ciMsYKE2PzKdoQvNWX10m7VvUa1fpDvdys5XEU4Bwu4BI8uIIm3EMLfCDA4Ble4c2Rzovz7nwsWzecfOYM/sD5/AGOVI3T</latexit>

> 96%
<latexit sha1_base64="yzvbLCMIqF+ROsmjZKK5ZwZDL5E=">AAAB83icbVBNSwMxEJ2tX7V+VT16CZaCp7JbitZbwYvHCvYDukvJptk2NMkuSVYoS/+GFw+KePXPePPfmLZ70NYHA4/3ZpiZFyacaeO6305ha3tnd6+4Xzo4PDo+KZ+edXWcKkI7JOax6odYU84k7RhmOO0nimIRctoLp3cLv/dElWaxfDSzhAYCjyWLGMHGSr4/NtYT6LbpV4fliltzl0CbxMtJBXK0h+UvfxSTVFBpCMdaDzw3MUGGlWGE03nJTzVNMJniMR1YKrGgOsiWN89R1SojFMXKljRoqf6eyLDQeiZC2ymwmeh1byH+5w1SEzWDjMkkNVSS1aIo5cjEaBEAGjFFieEzSzBRzN6KyAQrTIyNqWRD8NZf3iTdes27rjUeGpVWPY+jCBdwCVfgwQ204B7a0AECCTzDK7w5qfPivDsfq9aCk8+cwx84nz/0e5Dv</latexit>& 98%

Getting performance on-node is the 
real challenge

• We used to think of scaling as running 
O(100k) – O(1M) MPI ranks

• Starting in 2016 (Summit) the FLOPS 
per node has risen dramatically (48 TF)

• This focuses effort on “scaling in” 
instead of “scaling out”

• Bottom line: we need to do more work 
per node on fewer MPI ranks.

• Using the GPUs well is critical!
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Why using accelerators is hard:  SIMD/SIMT

• GPUs use SIMT (Single Instruction, 
Multiple Threads).  GPU architecture is 
designed around the assumption of 
highly concurrent workloads.

• Threads that follow different code paths 
are executed separately (sequentially).

• All CPUs now utilize vector instructions 
(SIMD) to achieve their advertised peak 
performance.

• SIMD = Single Instruction, Multiple Data.  
Requires chunks of data all traversing 
the same code path at the same time.

• If compiler can’t find a full SIMD 
instruction, it reverts to sequential.

Fugaku machine (Riken)

A64FX CPUs:  512-bit SIMD

Without SIMD instructions, 
500 PFLOPs à 64 PFLOPs
(8x slower!)
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GPUs have forced us to reevaluate everything

• The rapid change from distributed memory, CPU-only systems to 
heterogeneous, CPU-GPU has shaken up computational science.

• Some algorithms are fundamentally incompatible with SIMD/SIMT 
architectures. Others need to be carefully tuned for each type of 
GPU.

• Long-standing codes were designed around assumptions that no 
longer hold, it’s unclear how to adapt them for an uncertain future.
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The Exascale Computing Project

• A seven-year, $1.8B R&D effort that launched in 2016

• 81 research teams, roughly 10 researchers per team

7 
Years

$1.8B 6
Core DOE

 Labs

6 
Core DOE 

Labs

3
Technical 

Focus 
Areas

81 
R&D Teams 

1000 
Researchers

• Hardware and Integration
• Software Technology
• Application Development 

• Argonne
• Lawrence Berkeley
• Lawrence Livermore

• Oak Ridge
• Sandia
• Los Alamos

- Staff from most of the 17 DOE national laboratories take part in the project
- 6 HPC vendors participated in Path Forward supporting R&D
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Science and beyond: Applications and discovery in ECP

Health care

Accelerate 
and translate 

cancer research 
(partnership with NIH)

Energy security

Turbine wind plant 
efficiency

Design and 
commercialization 

of SMRs

Nuclear fission 
and fusion reactor 
materials design

Subsurface use 
for carbon capture, 
petroleum extraction, 

waste disposal

High-efficiency, 
low-emission 

combustion engine 
and gas turbine 

design

Scale up of clean 
fossil fuel 
combustion

Biofuel catalyst 
design

National security

Next-generation, 
stockpile 

stewardship codes 

Reentry-vehicle- 
environment 
simulation

Multi-physics science 
simulations of high-

energy density 
physics conditions

Economic security

Additive 
manufacturing 

of qualifiable 
metal parts

Reliable and 
efficient planning 
of the power grid

Seismic hazard 
risk assessment

Earth systems

Accurate regional 
impact assessments 

in Earth system 
models

Stress-resistant crop 
analysis and catalytic 

conversion 
of biomass-derived 

alcohols

Metagenomics 
for analysis of 

biogeochemical 
cycles, climate 

change, 
environmental 
remediation

Scientific discovery

Cosmological probe 
of the standard model 

of particle physics

Validate fundamental 
laws of nature

Plasma wakefield 
accelerator design

Light source-enabled 
analysis of protein 

and molecular 
structure and design

Find, predict, 
and control materials 

and properties

Predict and control 
magnetically 

confined fusion 
plasmas

Demystify origin of 
chemical elements

24 applications and 6 co-design projects
• Including 62 separate codes
• Representing over 10 million lines of code
• Many supporting large user communities
• Covering broad range of mission critical S&E domains  
• Mostly all MPI or MPI+OpenMP on CPUs at beginning of ECP
• Each project defines a domain-specific challenge problem for final benchmark
• Applications are evaluated in one of two categories
• Performance – achieve a 50x performance increase
• Capability – utilize new architectures for expanded S&E
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Four key ingredients of an ECP Application Development  Project

Science goal Algorithmic 
innovation

Porting Integration
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Four key ingredients of an ECP Application Development  Project

Science goal Algorithmic 
innovation

Porting Integration
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Algorithmic innovation goes beyond simply porting code

“The downside of ... benchmarks is that innovation is chiefly limited to the 
architecture  and compiler. Better data structures, algorithms, programming 
languages, …cannot be used, since that would give a misleading result. The system 
could win because of, say, the algorithm, and not because of the hardware or the 
compiler. While these guidelines are understandable when the foundations of 
computing are relatively stable, as they were in the 1990s and the first half of this 
decade, they are undesirable during a programming revolution. For this revolution to 
succeed, we need to encourage innovation at all levels.” 

-Hennessy and Patterson, Computer Architecture, A Quantitative Approach



14

GPUs do best for codes given …

ü massive fine-grained parallelism

ü concentrated performance bottlenecks

ü weak scaling problems

ü high arithmetic intensity and/or low data 
movement

ü minimal branching

ü high FLOP to byte (of storage) ratio

ü use of specialized instructions
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Algorithmic innovation: domain-driven adaptations critical for 
making efficient use of exascale systems

• Inherent strong scaling challenges on GPU-based systems à
- Ensembles vs. time averaging
- Fluid dynamics, seismology, molecular dynamics, time-stepping

• Increased dimensions of (fine-grained) parallelism to feed GPUs
- Ray tracing, Markov Chain Monte Carlo, fragmentation methods

• Localized physics models to maximize "free flops”
- MMF, electron subcycling, enhanced subgrid models, high-order discretizations

• Alternatives to sparse linear systems
- Higher order methods, Monte Carlo

• Reduced branching
- Event-based models
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Example: modeling and simulation of small modular reactors

Reproduced with permission

• ExaSMR is a coupled multiphysics ECP 
application to perform “virtual experiment” 
simulations of small modular nuclear reactor 
designs.

• Small modular nuclear reactors present 
significant simulation challenges
— Small size invalidates existing low-order models
— Natural circulation flow requires high-fidelity fluid 

flow simulation

• Two primary methods:
— Monte Carlo neutronics
— CFD with turbulence models
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Neutron transport: random particle statistics poorly suited to 
GPUs

• Stochastic history-based algorithm follows 
particles from birth to death.

• Most particles are short-lived, a few are 
not.

Everyone waits 
on this particle

time
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Branching code is highly undesirable on SIMT architectures 
(GPUs)

Even when each particle has roughly the same amount of work, thread 
divergence is a big problem when random sampling sends them down different 
code paths

parallel work GPU execution

Need to rethink code execution based on the target hardware.  For example, 
parallelizing over events (i.e. common code paths) rather than particles.
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New event-based algorithm gave ExaSMR significant speedup

• Parallelizing over events is a much 
better match for a SIMT 
architecture than parallelizing over 
particles.

• Further improvements gained by 
identifying parts of the system that 
have significantly different 
behavior and separating them out.

• Smaller, focused kernels allow for 
better occupancy, i.e. more 
efficient use of the hardware

4-10x f
ast

er
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Four key ingredients of an ECP Application Development  Project

Science goal Algorithmic 
innovation

Porting Integration
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Porting must be done with hardware in mind

Map algorithm to GPUs

• Rewrite, profile, and optimize
– Generally preserve the exact answer

• Data Layout for memory coalescing

• Loop ordering

• Kernel flattening

• Increased locality

• Recomputing vs. storing

• Reduced branching

• Eliminating copies

Map calculation to GPUs

• Reduced communication

• Reduced synchronization

• Increased parallelism

• Reduced precision

• Optimized linear algebra

Identify opportunities for 
improvement

• Mathematical representation

• “On the fly” recomputing vs. 
lookup tables

• Prioritization of new physical 
models

• Alternate discretizations (high AI)

• Localized subgrid models

• Sparse à dense systems

• Defining weak scaling target

• Initial condition from ROM

Hardware has significant impact on all aspects of simulation strategy
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Choosing the right programming model is all about balancing 
trade-offs

GPU-specific kernels
• Isolate the computationally-intensive parts of 

the code into CUDA/HIP/SYCL kernels.
• Refactoring the code to work well with the 

GPU is the majority of effort.

Loop pragma models
• Offload loops to GPU with OpenMP or 

OpenACC.
• Most common portability strategy for Fortran 

codes.

C++ abstractions
• Fully abstract loop execution and data 

management using advanced C++ features. 
• Kokkos and RAJA developed by NNSA in 

response to increasing hardware diversity.

Co-design frameworks
• Design application with a specific motif to use 

common software components
• Depend on co-design code (e.g. CEED, 

AMReX) to implement key functions on GPU.
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Programming models used in ECP applications

Platform portability provided by co-design 
projects (CoPA, CEED, AMReX) 33%

Native (CUDA/HIP/SYCL) or custom 
implementations 33%

ST programming models (Kokkos, RAJA, 
Legion) 18%

Directive-based programming models: 
(OpenMP, OpenACC) 16%

• Use of co-design/ST technologies provides 
significant benefit.  Fine-scale architectural details 
provided by co-design technologies

• Large percent of custom implementations reflects 
difficulty of universal platform-portable 
programming models that span diverse apps
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Example:  Quantum Monte Carlo for Materials

• To predict, understand, and design next 
generation materials requires reliable, non-
empirical, atomistic quantum mechanics-based 
methods.

• ECP application QMCPACK implements multiple 
Quantum Monte Carlo (QMC) algorithms to 
achieve this. Primary focus for ECP is on the real-
space diffusion Monte Carlo (DMC) and orbital 
space auxiliary field QMC (AFQMC) algorithms 
to enable cross-validation.

• OpenMP was selected as the GPU programming 
model to maximize future portability.

QMCPACK project, PI: Dr. Paul Kent (ORNL)
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“I know you’ve taken it in the 
teeth out there, but the first guy 
through the wall — he always 
gets bloody.”

—John Henry, Moneyball
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QMCPACK was first through the wall

• QMCPACK had a working CUDA 
implementation of the code that proved 
invaluable in understanding where OpenMP 
performance was falling short.

• OpenMP offload runtimes are not yet 
consistently performant across vendors.  
Initial OpenMP results were significantly 
slower than CUDA.

• With careful performance analysis and by 
working closely with the vendors, the 
QMCPACK team was able to steadily improve 
performance of their OpenMP version until it 
is now on par with CUDA.
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Languages

0

5

10

15

20

25

30

35

Loop pragma Kokkos / RAJA Native GPU
kernels

Co-design /
libraries

12 14

25 25

GPU Programming Models

0

10

20

30

40

50

60

70

Fortran C/C++ Python

14

64

4

Distribution of ECP programming models has changed over time

Programming language/model choices have evolved over course of ECP
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Four key ingredients of an ECP Application Development  Project

Science goal Algorithmic 
innovation

Porting Integration
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Wind Farm
(ExaWind)

Cosmology
(ExaSky)

National Security
(MAPP)

Fusion Energy 
(WDMApp)ECP Applications:

Tools

Prog Models & Runtimes

Data and Viz
Ecosystems and Delivery

Math Libraries Legend

Selected ECP Software Technologies 

… and moreSubsurface 
Flow

Ecosystem: E4S at large 

Spack

… and more

F N W

Programming Models 
and Runtimes

MPI

Umpire

RAJA

CHAI

Kokkos 

… and more

C F N WSC F N WS

F W

N S

N S

N S

Tools and 
Technology

PAPI

Flux

Caliper

TAU

HPCToolkit

Compilers 
and Support

LLVM

OpenMP

… and more

C F N WS

C F N W

C F N S

N S

C F S

F W

N

Math Libraries (xSDK)

ArborX

SUNDIALS

PETSc/TAO

SuperLU

MFEM

Trilinos

hypre

FFT

BLAS, LAPACK

STRUMPACK

… and more

N WS

F N S

F

WSF

WSF

N S

C W

C W

F W

N

zfp

ALPINE

Cinema

VTK-m

SZ

SPOT

Visualization Analysis 
and Reduction 

… and more

C N WS

C N

C F N WS

C

F N

N

Data Mgmt, I/O, 
Checkpoint Restart 

PnetCDF

ADIOS

UnifyFS

VeloC

HDF5

SCR

MPI-IO

… and more
C

N

F

C F N WS

W

F W

N

C F N S W

Integration:  ECP applications rely heavily on high quality software 
tools and libraries

24 apps, 
6 co-design 
centers

Shown are 36 ST products (used or being 
considered by the 5 apps above) 

ST overall has 70 unique software products 
used by 24 apps and 6 co-design centers

ECP apps rely on multiple software technologies; some software products contribute to multiple distinctly developed
components of a multiphysics app (such as fusion energy modeling) that must run within a single executable.

See E4S.io 
for more
ST products

AID
AML
BEE
Darshan
DTK
Dyninst
FleCSI
ForTriliinios
GASNet
Ginkgo
Kokkoskernels
Legion
libEnsemble
MarFS
NRM
OpenACC
Papyrus
PaRSEC
PDT
PowerStack
ScaLAPACK
SCR
SICM
SLATE
SWIG
Tasmanian
Umap
UPC++
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Extreme-scale Scientific Software Stack (E4S)

• E4S: HPC software ecosystem – a curated software portfolio
• A Spack-based distribution of software tested for interoperability 

and portability to multiple architectures
• Available from source, containers, cloud, binary caches
• Leverages and enhances SDK interoperability thrust
• Not a commercial product – an open resource for all
• Growing functionality: Nov 2021: E4S 21.11 – 91 full release products

https://e4s.io
E4S lead: Sameer Shende (U Oregon)

Also includes other products, e.g.,
AI: PyTorch, TensorFlow, Horovod
Co-Design: AMReX, Cabana, MFEM

https://spack.io
Spack lead: Todd Gamblin (LLNL)

Community Policies
Commitment to software quality

DocPortal
Single portal to all                 
E4S product info

Portfolio testing
Especially leadership 

platforms

Curated collection
The end of dependency hell

Quarterly releases 
Release 1.2 – November

Build caches
10X build time 
improvement

Turnkey stack
A new user experience https://e4s.io 

E4S Strategy Group
US agencies, industry, 

international

https://e4s.io/
https://spack.io/
https://e4s.io/


31

Final thoughts

•This is an exciting and terrifying time to be doing computational 
science.

•Those who take the time to understand the hardware they are 
running on and/or coding for will have a major advantage over 
those who try to use past practices blindly.

•For computational capabilities, don’t reinvent the wheel!  Build on 
the successes of others whenever possible.

•For applied math, re-examine and question everything!  Many best 
practices are based on assumptions from the past that no longer 
apply.  There are many opportunities for innovation.
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