
Exascale Computing Challenges:
Application Perspectives

Erik Draeger, Lawrence Livermore National Laboratory (LLNL)
Deputy Director of Application Development for the DOE Exascale Computing Project (ECP)

2023 PSAAP IV Preproposal Meeting

August 8, 2023

LLNL-PRES-845582

2

We are at a transition point in HPC

Distributed Memory Era
GFLOP/s - TFLOP/s – PFLOP/s

Vector Era
MFLOP/s - GFLOP/s

• Parallelism through
vector processors.

• Codes often written at
very low level to make
optimal use of hardware.

• Parallelism through MPI.

• Using an optimal
parallel algorithm was
critical to avoid
duplication of work or
unnecessary
communication.

• Once distributed, code
could be treated serially.

10s to 100s of cores 1000s of cores 104 to 106 cores

• For the most part, an MPI
code ran anywhere. For best
performance, key kernels
could be tuned.

• As CPU frequencies stopped
increasing, parallelism
became more extreme and
specialized hardware more
common.

1980s 1990s 2000s 2010s

3

We are at a transition point in HPC

2010s 2020s

Heterogeneity is the new reality

• Computational horsepower has
significantly outpaced memory
capacity and speed.

• Separate memory spaces add
complexity, and can cause
performance issues (e.g. NUMA) or
errors if not handled correctly.

• Performance or portability?

• Refactoring an existing code is a lot of
work! You really don’t want to have to
do it again in ten years.

Heterogeneous Era
PFLOP/s - EFLOP/s

• CPUs + accelerators with separate
memory spaces to start, unclear what
else will join the fray.

• Massive fine-grained parallelism
required.

• Programming model has to match the
architecture.

• Architectural landscape is changing
rapidly, with an unclear future.

4

DOE HPC Roadmap to Exascale Systems

LLNL
IBM/NVIDIA

ANL
IBM BG/Q

ORNL
Cray/AMD/NVIDIA

LBNL
HPE/AMD/NVIDIA

LANL/SNL
HPE/Intel

ANL
Intel/HPE

ORNL
HPE/AMD

LLNL
HPE/AMD

LANL/SNL
Cray/Intel Xeon/KNL

FY 2012 FY 2016 FY 2018 FY 2021

ORNL
IBM/NVIDIA

LLNL
IBM BG/Q

Sequoia

Cori

Trinity

ThetaMira

Titan Summit

ANL
Cray/Intel KNL

LBNL
Cray/Intel Xeon/KNL

Sierra

FY 2023FY 2022

Exascale
Systems

Version 2.0

de
co

m
m

is
si

on
ed Aurora

ANL
HPE/AMD/NVIDIA

Polaris
To this point, only
NVIDIA GPUs

AMD, Intel and
NVIDIA GPUs!

5

Why heterogeneous computing is hard

• Data movement is now expensive
relative to compute. Parallel
algorithms need to be written to
minimize transfers.

• Having multiple memory spaces
requires careful bookkeeping.
Even hardware-unified memory is
not without pitfalls.

Frontier compute node

6

Performance on current and next-gen HPC architectures requires
effective use of accelerators

FLOPS by device

<latexit sha1_base64="4W26H14gZJGSDfIeIqIWOMNZ0W4=">AAAB7HicbVBNSwMxEJ31s9avqkcvwVLwVHZLqXqRghePFdy20C4lm2bb0CS7JFmhLP0NXjwo4tUf5M1/Y9ruQVsfDDzem2FmXphwpo3rfjsbm1vbO7uFveL+weHRcenktK3jVBHqk5jHqhtiTTmT1DfMcNpNFMUi5LQTTu7mfueJKs1i+WimCQ0EHkkWMYKNlfzbm0a/MiiV3aq7AFonXk7KkKM1KH31hzFJBZWGcKx1z3MTE2RYGUY4nRX7qaYJJhM8oj1LJRZUB9ni2BmqWGWIoljZkgYt1N8TGRZaT0VoOwU2Y73qzcX/vF5qousgYzJJDZVkuShKOTIxmn+OhkxRYvjUEkwUs7ciMsYKE2PzKdoQvNWX10m7VvUa1fpDvdys5XEU4Bwu4BI8uIIm3EMLfCDA4Ble4c2Rzovz7nwsWzecfOYM/sD5/AGOVI3T</latexit>

> 96%
<latexit sha1_base64="yzvbLCMIqF+ROsmjZKK5ZwZDL5E=">AAAB83icbVBNSwMxEJ2tX7V+VT16CZaCp7JbitZbwYvHCvYDukvJptk2NMkuSVYoS/+GFw+KePXPePPfmLZ70NYHA4/3ZpiZFyacaeO6305ha3tnd6+4Xzo4PDo+KZ+edXWcKkI7JOax6odYU84k7RhmOO0nimIRctoLp3cLv/dElWaxfDSzhAYCjyWLGMHGSr4/NtYT6LbpV4fliltzl0CbxMtJBXK0h+UvfxSTVFBpCMdaDzw3MUGGlWGE03nJTzVNMJniMR1YKrGgOsiWN89R1SojFMXKljRoqf6eyLDQeiZC2ymwmeh1byH+5w1SEzWDjMkkNVSS1aIo5cjEaBEAGjFFieEzSzBRzN6KyAQrTIyNqWRD8NZf3iTdes27rjUeGpVWPY+jCBdwCVfgwQ204B7a0AECCTzDK7w5qfPivDsfq9aCk8+cwx84nz/0e5Dv</latexit>& 98%

Getting performance on-node is the
real challenge

• We used to think of scaling as running
O(100k) – O(1M) MPI ranks

• Starting in 2016 (Summit) the FLOPS
per node has risen dramatically (48 TF)

• This focuses effort on “scaling in”
instead of “scaling out”

• Bottom line: we need to do more work
per node on fewer MPI ranks.

• Using the GPUs well is critical!

7

Why using accelerators is hard: SIMD/SIMT

• GPUs use SIMT (Single Instruction,
Multiple Threads). GPU architecture is
designed around the assumption of
highly concurrent workloads.

• Threads that follow different code paths
are executed separately (sequentially).

• All CPUs now utilize vector instructions
(SIMD) to achieve their advertised peak
performance.

• SIMD = Single Instruction, Multiple Data.
Requires chunks of data all traversing
the same code path at the same time.

• If compiler can’t find a full SIMD
instruction, it reverts to sequential.

Fugaku machine (Riken)

A64FX CPUs: 512-bit SIMD

Without SIMD instructions,
500 PFLOPs à 64 PFLOPs
(8x slower!)

8

GPUs have forced us to reevaluate everything

• The rapid change from distributed memory, CPU-only systems to
heterogeneous, CPU-GPU has shaken up computational science.

• Some algorithms are fundamentally incompatible with SIMD/SIMT
architectures. Others need to be carefully tuned for each type of
GPU.

• Long-standing codes were designed around assumptions that no
longer hold, it’s unclear how to adapt them for an uncertain future.

9

The Exascale Computing Project

• A seven-year, $1.8B R&D effort that launched in 2016

• 81 research teams, roughly 10 researchers per team

7
Years

$1.8B 6
Core DOE

 Labs

6
Core DOE

Labs

3
Technical

Focus
Areas

81
R&D Teams

1000
Researchers

• Hardware and Integration
• Software Technology
• Application Development

• Argonne
• Lawrence Berkeley
• Lawrence Livermore

• Oak Ridge
• Sandia
• Los Alamos

- Staff from most of the 17 DOE national laboratories take part in the project
- 6 HPC vendors participated in Path Forward supporting R&D

10

Science and beyond: Applications and discovery in ECP

Health care

Accelerate
and translate

cancer research
(partnership with NIH)

Energy security

Turbine wind plant
efficiency

Design and
commercialization

of SMRs

Nuclear fission
and fusion reactor
materials design

Subsurface use
for carbon capture,
petroleum extraction,

waste disposal

High-efficiency,
low-emission

combustion engine
and gas turbine

design

Scale up of clean
fossil fuel
combustion

Biofuel catalyst
design

National security

Next-generation,
stockpile

stewardship codes

Reentry-vehicle-
environment
simulation

Multi-physics science
simulations of high-

energy density
physics conditions

Economic security

Additive
manufacturing

of qualifiable
metal parts

Reliable and
efficient planning
of the power grid

Seismic hazard
risk assessment

Earth systems

Accurate regional
impact assessments

in Earth system
models

Stress-resistant crop
analysis and catalytic

conversion
of biomass-derived

alcohols

Metagenomics
for analysis of

biogeochemical
cycles, climate

change,
environmental
remediation

Scientific discovery

Cosmological probe
of the standard model

of particle physics

Validate fundamental
laws of nature

Plasma wakefield
accelerator design

Light source-enabled
analysis of protein

and molecular
structure and design

Find, predict,
and control materials

and properties

Predict and control
magnetically

confined fusion
plasmas

Demystify origin of
chemical elements

24 applications and 6 co-design projects
• Including 62 separate codes
• Representing over 10 million lines of code
• Many supporting large user communities
• Covering broad range of mission critical S&E domains
• Mostly all MPI or MPI+OpenMP on CPUs at beginning of ECP
• Each project defines a domain-specific challenge problem for final benchmark
• Applications are evaluated in one of two categories
• Performance – achieve a 50x performance increase
• Capability – utilize new architectures for expanded S&E

11

Four key ingredients of an ECP Application Development Project

Science goal Algorithmic
innovation

Porting Integration

12

Four key ingredients of an ECP Application Development Project

Science goal Algorithmic
innovation

Porting Integration

13

Algorithmic innovation goes beyond simply porting code

“The downside of ... benchmarks is that innovation is chiefly limited to the
architecture and compiler. Better data structures, algorithms, programming
languages, …cannot be used, since that would give a misleading result. The system
could win because of, say, the algorithm, and not because of the hardware or the
compiler. While these guidelines are understandable when the foundations of
computing are relatively stable, as they were in the 1990s and the first half of this
decade, they are undesirable during a programming revolution. For this revolution to
succeed, we need to encourage innovation at all levels.”

-Hennessy and Patterson, Computer Architecture, A Quantitative Approach

14

GPUs do best for codes given …

ü massive fine-grained parallelism

ü concentrated performance bottlenecks

ü weak scaling problems

ü high arithmetic intensity and/or low data
movement

ü minimal branching

ü high FLOP to byte (of storage) ratio

ü use of specialized instructions

15

Algorithmic innovation: domain-driven adaptations critical for
making efficient use of exascale systems

• Inherent strong scaling challenges on GPU-based systems à
- Ensembles vs. time averaging
- Fluid dynamics, seismology, molecular dynamics, time-stepping

• Increased dimensions of (fine-grained) parallelism to feed GPUs
- Ray tracing, Markov Chain Monte Carlo, fragmentation methods

• Localized physics models to maximize "free flops”
- MMF, electron subcycling, enhanced subgrid models, high-order discretizations

• Alternatives to sparse linear systems
- Higher order methods, Monte Carlo

• Reduced branching
- Event-based models

16

Example: modeling and simulation of small modular reactors

Reproduced with permission

• ExaSMR is a coupled multiphysics ECP
application to perform “virtual experiment”
simulations of small modular nuclear reactor
designs.

• Small modular nuclear reactors present
significant simulation challenges
— Small size invalidates existing low-order models
— Natural circulation flow requires high-fidelity fluid

flow simulation

• Two primary methods:
— Monte Carlo neutronics
— CFD with turbulence models

17

Neutron transport: random particle statistics poorly suited to
GPUs

• Stochastic history-based algorithm follows
particles from birth to death.

• Most particles are short-lived, a few are
not.

Everyone waits
on this particle

time

18

Branching code is highly undesirable on SIMT architectures
(GPUs)

Even when each particle has roughly the same amount of work, thread
divergence is a big problem when random sampling sends them down different
code paths

parallel work GPU execution

Need to rethink code execution based on the target hardware. For example,
parallelizing over events (i.e. common code paths) rather than particles.

19

New event-based algorithm gave ExaSMR significant speedup

• Parallelizing over events is a much
better match for a SIMT
architecture than parallelizing over
particles.

• Further improvements gained by
identifying parts of the system that
have significantly different
behavior and separating them out.

• Smaller, focused kernels allow for
better occupancy, i.e. more
efficient use of the hardware

4-10x f
ast

er

20

Four key ingredients of an ECP Application Development Project

Science goal Algorithmic
innovation

Porting Integration

21

Porting must be done with hardware in mind

Map algorithm to GPUs

• Rewrite, profile, and optimize
– Generally preserve the exact answer

• Data Layout for memory coalescing

• Loop ordering

• Kernel flattening

• Increased locality

• Recomputing vs. storing

• Reduced branching

• Eliminating copies

Map calculation to GPUs

• Reduced communication

• Reduced synchronization

• Increased parallelism

• Reduced precision

• Optimized linear algebra

Identify opportunities for
improvement

• Mathematical representation

• “On the fly” recomputing vs.
lookup tables

• Prioritization of new physical
models

• Alternate discretizations (high AI)

• Localized subgrid models

• Sparse à dense systems

• Defining weak scaling target

• Initial condition from ROM

Hardware has significant impact on all aspects of simulation strategy

22

Choosing the right programming model is all about balancing
trade-offs

GPU-specific kernels
• Isolate the computationally-intensive parts of

the code into CUDA/HIP/SYCL kernels.
• Refactoring the code to work well with the

GPU is the majority of effort.

Loop pragma models
• Offload loops to GPU with OpenMP or

OpenACC.
• Most common portability strategy for Fortran

codes.

C++ abstractions
• Fully abstract loop execution and data

management using advanced C++ features.
• Kokkos and RAJA developed by NNSA in

response to increasing hardware diversity.

Co-design frameworks
• Design application with a specific motif to use

common software components
• Depend on co-design code (e.g. CEED,

AMReX) to implement key functions on GPU.

23

Programming models used in ECP applications

Platform portability provided by co-design
projects (CoPA, CEED, AMReX) 33%

Native (CUDA/HIP/SYCL) or custom
implementations 33%

ST programming models (Kokkos, RAJA,
Legion) 18%

Directive-based programming models:
(OpenMP, OpenACC) 16%

• Use of co-design/ST technologies provides
significant benefit. Fine-scale architectural details
provided by co-design technologies

• Large percent of custom implementations reflects
difficulty of universal platform-portable
programming models that span diverse apps

24

Example: Quantum Monte Carlo for Materials

• To predict, understand, and design next
generation materials requires reliable, non-
empirical, atomistic quantum mechanics-based
methods.

• ECP application QMCPACK implements multiple
Quantum Monte Carlo (QMC) algorithms to
achieve this. Primary focus for ECP is on the real-
space diffusion Monte Carlo (DMC) and orbital
space auxiliary field QMC (AFQMC) algorithms
to enable cross-validation.

• OpenMP was selected as the GPU programming
model to maximize future portability.

QMCPACK project, PI: Dr. Paul Kent (ORNL)

25

“I know you’ve taken it in the
teeth out there, but the first guy
through the wall — he always
gets bloody.”

—John Henry, Moneyball

26

QMCPACK was first through the wall

• QMCPACK had a working CUDA
implementation of the code that proved
invaluable in understanding where OpenMP
performance was falling short.

• OpenMP offload runtimes are not yet
consistently performant across vendors.
Initial OpenMP results were significantly
slower than CUDA.

• With careful performance analysis and by
working closely with the vendors, the
QMCPACK team was able to steadily improve
performance of their OpenMP version until it
is now on par with CUDA.

27

Languages

0

5

10

15

20

25

30

35

Loop pragma Kokkos / RAJA Native GPU
kernels

Co-design /
libraries

12 14

25 25

GPU Programming Models

0

10

20

30

40

50

60

70

Fortran C/C++ Python

14

64

4

Distribution of ECP programming models has changed over time

Programming language/model choices have evolved over course of ECP

28

Four key ingredients of an ECP Application Development Project

Science goal Algorithmic
innovation

Porting Integration

29

Wind Farm
(ExaWind)

Cosmology
(ExaSky)

National Security
(MAPP)

Fusion Energy
(WDMApp)ECP Applications:

Tools

Prog Models & Runtimes

Data and Viz
Ecosystems and Delivery

Math Libraries Legend

Selected ECP Software Technologies

… and moreSubsurface
Flow

Ecosystem: E4S at large

Spack

… and more

F N W

Programming Models
and Runtimes

MPI

Umpire

RAJA

CHAI

Kokkos

… and more

C F N WSC F N WS

F W

N S

N S

N S

Tools and
Technology

PAPI

Flux

Caliper

TAU

HPCToolkit

Compilers
and Support

LLVM

OpenMP

… and more

C F N WS

C F N W

C F N S

N S

C F S

F W

N

Math Libraries (xSDK)

ArborX

SUNDIALS

PETSc/TAO

SuperLU

MFEM

Trilinos

hypre

FFT

BLAS, LAPACK

STRUMPACK

… and more

N WS

F N S

F

WSF

WSF

N S

C W

C W

F W

N

zfp

ALPINE

Cinema

VTK-m

SZ

SPOT

Visualization Analysis
and Reduction

… and more

C N WS

C N

C F N WS

C

F N

N

Data Mgmt, I/O,
Checkpoint Restart

PnetCDF

ADIOS

UnifyFS

VeloC

HDF5

SCR

MPI-IO

… and more
C

N

F

C F N WS

W

F W

N

C F N S W

Integration: ECP applications rely heavily on high quality software
tools and libraries

24 apps,
6 co-design
centers

Shown are 36 ST products (used or being
considered by the 5 apps above)

ST overall has 70 unique software products
used by 24 apps and 6 co-design centers

ECP apps rely on multiple software technologies; some software products contribute to multiple distinctly developed
components of a multiphysics app (such as fusion energy modeling) that must run within a single executable.

See E4S.io
for more
ST products

AID
AML
BEE
Darshan
DTK
Dyninst
FleCSI
ForTriliinios
GASNet
Ginkgo
Kokkoskernels
Legion
libEnsemble
MarFS
NRM
OpenACC
Papyrus
PaRSEC
PDT
PowerStack
ScaLAPACK
SCR
SICM
SLATE
SWIG
Tasmanian
Umap
UPC++

30

Extreme-scale Scientific Software Stack (E4S)

• E4S: HPC software ecosystem – a curated software portfolio
• A Spack-based distribution of software tested for interoperability

and portability to multiple architectures
• Available from source, containers, cloud, binary caches
• Leverages and enhances SDK interoperability thrust
• Not a commercial product – an open resource for all
• Growing functionality: Nov 2021: E4S 21.11 – 91 full release products

https://e4s.io
E4S lead: Sameer Shende (U Oregon)

Also includes other products, e.g.,
AI: PyTorch, TensorFlow, Horovod
Co-Design: AMReX, Cabana, MFEM

https://spack.io
Spack lead: Todd Gamblin (LLNL)

Community Policies
Commitment to software quality

DocPortal
Single portal to all
E4S product info

Portfolio testing
Especially leadership

platforms

Curated collection
The end of dependency hell

Quarterly releases
Release 1.2 – November

Build caches
10X build time
improvement

Turnkey stack
A new user experience https://e4s.io

E4S Strategy Group
US agencies, industry,

international

https://e4s.io/
https://spack.io/
https://e4s.io/

31

Final thoughts

•This is an exciting and terrifying time to be doing computational
science.

•Those who take the time to understand the hardware they are
running on and/or coding for will have a major advantage over
those who try to use past practices blindly.

•For computational capabilities, don’t reinvent the wheel! Build on
the successes of others whenever possible.

•For applied math, re-examine and question everything! Many best
practices are based on assumptions from the past that no longer
apply. There are many opportunities for innovation.

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product endorsement purposes.

LLNL-PRES-852697
This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National
Security, LLC

