
For the last several years I’ve been involved in helping HPC applications at 
LLNL prepare for advanced architectures:  First, Sierra, and now El Capitan.

I’ve been asked to share with you an overview of some of the CS areas that will 
be coming out in the RFI.  Additional details on some specific technical areas will 
be presented in follow-on presentations throughout the day.
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Today’s extreme scale architectures come with many programming challenges as 
shown here.

New node designs include manycore and multicore designs with numerous 
hyperthreaded processes. GPU nodes have thousands of effective cores of parallel 
processing. Both GPUs and CPUs continue to require more and more parallelism to use 
them efficiently.  The enormous amount of compute capability per node and decreasing 
amounts memory per unit of compute are also challenging traditional MPI-only 
decompositions and load balancing techniques.

As a greater variety of CPUs, GPUs, and potentially novel,  specialized, or 
disaggregated hardware become available, maintaining portability between systems 
becomes more and more difficult.

With increased component count comes the potential for reduced reliability. Vendors 
have done an amazing job of keeping reliability high, but applications still must be 
prepared with fault mitigation strategies such as fast checkpoint/recovery schemes.

There is a potential for increased system noise.  Most centers have been able to 
minimize these effects by dedicating cores or threads to system tasks, but effective load 
balancing is still a significant challenge for many applications.

Multi-level memory management is becoming the norm with high bandwidth memories 
and non-volatile memories becoming more popular.

And increased system scale will result in increase workflow and more complex multi-
tasking schemes.
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Extreme-scale HPC architectures introduce programming 
challenges 

System Change Programming Challenge

Increased node-level parallelism Expressing/managing node-level & hybrid parallelism

Diverse target architectures Performance portability across systems

Decreased system reliability Resilience/Fault mitigation

Increased system noise Increased need for effective load-balancing strategies

Deeper memory hierarchies Management of memory hierarchies/locality

Increased system scale Increased workflow complexity



This is a list of many of the CS topics of interest for the PSAAP IV program.  
This list is not exclusive.  We will entertain other topics that are in the spirit of 
advancing extreme-scale HPC.  These topics are offered as examples of topics  
of interest to the Labs.

I will talk about each of these in more detail in the slides to follow.  I will be giving 
examples of prototype work at the National Labs in these areas.  This is not to 
say that these are all solved problems … because they are not.  The examples 
are intended to give you a feel for the type of work that is needed to solve 
difficult national security problems.
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§ Data Analytics for science and engineering applications 

§ Exploration of advanced HPC architectures 

§ Programming environments and runtime systems 

§ Workflow automation 

§ Productivity and performance portability

§ New approaches to engineering 

§ Algorithms/models 

§ Microelectronics

PSAAP IV will support the following Math & CS topics and more*

*These topics are not exclusive.  Other topics that will enable advancements in Exascale computing are also encouraged. 



Data analytics for science and engineering applications is an obvious topic of interest.

The pace of change in AL/ML is so rapid that it is hard to predict what kind of impact we 
will see on science and engineering applications.  For PDE-based simulation codes that 
are very common in the NNSA we have identified at least three levels at which AI/ML 
techniques can be integrated into our modeling and simulation codes.  

First, ML inference might be called “in the loop” one or more times every time step.  
Such inference might take the place of a more expensive physically-based model.

Second, ML training or inference might be called  “on the loop” every 10^3 time steps or 
so.  Such training might attempt to respond to the trajectory of the simulation.  Although 
the cost of such training is amortized over many time steps, it would still have to e fairly 
low-cost to avoid substantially impacting the overall simulation performance.

Finally, ML training or inference might be called “around the loop” every  simulation.  
This is the mode that is likely least sensitive to training performance.

For all of these modalities, it will be important to be able to quantify uncertainties.

Some work is currently going on in NNSA to explore offloading so me of this training 
and/or inference  to dedicated special purpose accelerators.  The latency imposed by 
the data motion for the offload will be a key metric in determining whether such 
accelerators can improve simulation performance.

Understanding how embedded ML impacts simulation performance is another area of 
active research.
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§ Machine learning (ML) for science/engineering applications
— Quantifying uncertainty in ML
— AI/ML accelerators / non von Neumann architectures
— Impact of embedded ML on application performance

Data Analytics for science/engineering applications

Active learning or intelligent sampling

Smart ALE

ML inference 
every time step: 
in the loop

ML training or 
inference every 
1k time steps:
on the loop

ML training or 
inference every 
simulation:
around the loop

Physics simulation



One of the areas of interest is combining or statistically fusing simulation and 
experimental data.  The national laboratories have a role of stockpile stewardship 
where the goal is to certify nuclear weapons design without underground testing.  
Many of the components and subassemblies are individually tested, but some 
subassemblies and the entire system can not be tested and therefore, we must 
simulate and certify these systems using calibrated models.

Unlike conventional machine learning where you have large amounts of data, 
and it is okay to classify or identify objects with an accuracy in the 80-90% level, 
the DOE has high consequence applications for machine learning that will 
require 5 nines of reliability – only making a mistake 1 out of 10000 times or 
more.  We need machine learning approaches that work on far less data, maybe 
taking advantage of Generative Adversarial Networks to generate synthetic data 
along with the real data.  We need to quantify uncertainty in ML, and know when 
a machine learning algorithm is interpolating vs. extrapolating.  We need a 
rigorous math model that goes with the ML to be able to explain the results.  

Data management  and data curation are also important topics.  The diagram 
here shows a timeline from right to left and indicates data transactions to and 
from a data store.  Data access must be low cost, but we also want maintain 
provenance of data and trained models, eg., for reproducibility.
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§ Statistical fusion of simulation and experimental data

§ Rigorous math models for data analytics

§ Data management and data curation

Data Analytics for science/engineering applications

Base Model 
(DNN_v1.0)Anticipated 

Queries Run in 
Physics Code

Data Store

Train DNN

Pull low credibility queries 
from database

Push base model 
to database 

Generate Training Inputs

Run Physics Code using inputs

New Model 
(DNN_2.0)

Retrain DNN

…

Push new model 
to database 

Retrain DNN

Pull low credibility queries 
from database

Generate Training Inputs

Run Physics Code using inputs

New Model 
(DNN_vx.0)



Co-design of advanced HPC architectures is a topic of interest.  As the figure 
shows, co-design is where evolutionary and revolutionary architectures and 
applications come together to create new HPC designs.  This includes the 
design of memory, CPU/GPU configurations, and message passing and network 
protocols.  Future HPC systems might also include various specialized hardware 
such as FPGAs, DSPs, network accelerators, AI accelerators, graph 
accelerators, etc.  The ability to simulate HPC architectures using tools such as 
the Structural Simulation Toolkit (SST) is important when evaluating 
architectures.  At the same time verifying and validating models on advanced 
architecture testbeds with the same or similar system software in necessary.  
The labs have a number of proxy applications that can be tested on these new 
architectures. The goal is to predict performance and perform design trade 
studies without building a full scale system. 

Understanding the performance impact of memory hierarchies, and possibly 
disaggregated systems is also of interest.

6

6
LLNL-PRES-852845

§ Architecture simulation/emulation
— Proxy applications 
— Proxy architectures
— Model fidelity

§ Performance prediction
— Novel hardware
— Specialization
— Disaggregation

Exploration of advanced HPC architectures

Optimization + UQ 
+ 
sensitivity/variance

http://www.sandia.gov/asc/integrated_codes.html

Shock + EM + MHD

Thermal + fluid + aerodynamics 
+ solid mechanics + structural 
dynamics

Radiation + electrical + electromagneticRAMSES

MPP Solver Suites

Multi-scale	&	-physics	code	examples

MPP HPC simulator

Advanced Scientific Computing Research (ASCR)

e.g.

And Others…



The rise of chiplet technology may be an enabling technology for greater 
availability of specialized hardware.

8/9/23

Los Alamos National Laboratory 7
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A convergence of advancements: “Chiplets” are changing the 
economics of specialization 

Packaging innovations from 
Intel and TSMC

Standards based Chip-
to-Chip protocols 

A large ecosystem of 
Licensable and Open IP 



Composition of programming environments and runtime systems is an important 
topic of interest.  The diagram below shows the library dependency graph of one 
of the Multiphysics codes at LLNL.  This gives some idea of the complexity of 
these applications, and the number of libraries, both lab-developed, and external 
open source, that they rely on.  These codes rely on multiple languages and 
programming models, and any programming environment and runtime systems 
must interoperate in these kinds of complex builds.

The labs also have 10s of millions of lines of legacy, validated codes, and 
technologies that can integrate with those legacy code bases are especially 
welcome.
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§ Composition of libraries, runtimes, programming languages

§ Task based programming

§ Emerging parallel programming languages and programming models

§ Compiler technology, e.g., JIT, DSLs 

Programming environments and runtime systems

Curated ubset of Marbl’s 50+ dependencies



Portability abstractions that insulate developers from hardware and allow them to 
write code that performs well on multiple hardware platforms are important to 
NNSA.  

Raja has proven to be a very effective portability abstraction.  This graph shows 
the performance of test kernels in the RAJA performance suite as implemented 
in RAJA and compiled with the HIP back end for AMD GPUs and implemented in 
native HIP.  The performance is nearly identical for most kernels producing a 
ratio of 1.0.  Note that similar comparisons for RAJA/CUDA on Nvidia or for 
Kokkos on AMD or Nvidia would produce very similar results.
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§ Performance portability to insulate developers from hardware

Programming environments and runtime systems

RAJA Performance Suite
RAJA/HIP vs. native HIP (1.0 is ideal)

rzvernal (MI250X), ROCm 5.4.3

Nearly all RAJA Perf Suite kernels have the same performance in RAJA/HIP and native HIP



Workflow automation is another topics of interest.  Simulation setup is still 
difficult where ensemble runs are typically the norm, with a post processing step 
that looks at the analysis.  

Management of bulk data is another area of interest.  NNSA has been 
developing various data warehouse strategies that allow in-situ passing of data 
between applications.

The role of containers in HPC is an area of interest.  Can containers be used to 
store not only the simulation executable but also the data, so that you have a 
history and a provenance associated with they runs.

Interoperability and portability between cloud resources and NNSA HPC centers 
is of interest, including how compute cloud services contribute to workflows.

Dynamic management of resources is of interest, especially as we contemplate 
systems with specialized or disaggregated hardware.

Rob Neely will have more to say about workflows later today.
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§ Simulation setup, simulation runs or complex ensemble runs and post processing 

§ Management of bulk data

§ Simulation repeatability, e.g., role of containers

§ Portability into/from Cloud resources

§ Dynamic resource management, e.g., Flux

Workflow automation



As system scale increases, workflows are becoming more and more 
complicated.  It is now common to see workflows with multiple simulation and 
modeling tools, frequently operating at multiple fidelities in 1D, 2D, and 3D.  
Workflows also include ML/AI optimization loops with components that are 
trained from simulation results and help steer simulation ensembles as they are 
trained.
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Modern workflows are becoming very complicated

Hydra

Hermit 
Atomic 
Physics Kosh/Sina

Merlin+Maestro
& Flux

LBANN Hermit
(re)-Training

Conduit/Sidr

LBANN Multi-
fidelity 

Optimization
(re)-Training

Multi-fidelity 
optimization 

workflow

Workflow Manager, ML Inference Services, 
Intermediate Data Storage for ML, 

In-Situ Data Processing

1D Simulations High Res 2D 
Simulations

Low and High-Res 3DTrainingTraining Low-Res 2D

Vidya ALE/Hermit & MaCC Inference

§ Leveraging Standardized Codes Packages

§ Integrating tools into end-to-end CogSim Workflow
— Supporting in-situ continuous training / model evolution
— Integrates DL at multiple levels

§ Rabbits provide new capability for integration and 
acceleration



El Capitan will feature a near-node local storage architecture called rabbits.  
Each rabbit blade will make direct PCI connections to 8 compute blades and 
provide 2TB of SSD non-volatile storage per compute node.  The Rabbit SSDs 
can be used as burst buffers or as low-latency local file systems.  Each Rabbit 
also has its own CPU processor that can run arbitrary containerized applications 
such as in-transit analysis.  Rabbits are also connected to the high speed 
network fabric.
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The El Capitan Rabbit local-storage architecture

§ One Rabbit blade per compute chassis

§ Each Rabbit houses 18 SSDs (16+2 
spare) with PCIe connections to every 
compute node via PCIe switch (Rabbit-S)
— 2TB capacity per compute node

§ Each Rabbit contains 1 AMD EPYC CPU 
(Rabbit-P)

§ Rabbit blades are also connected to the 
high-speed interconnect



Exascale and post-exascale systems can produce data at such high rates that 
saving all data for later analysis is difficult or impossible. In-situ or in-transit 
analysis and visualization, perhaps using dedicated hardware such as rabbits, is 
of great interest.
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In-situ visualization with Ascent and Visit

3D Ballistics Research Lab 81a Shaped Charge on 4 nodes of RzVernal with 116 Million Quadrature Points



There is a strong overlap between productivity and performance portability and 
programing models and runtime systems so we’ve already talked about some of 
the main interests in this area.

All of our critical mission codes need productivity and performance portability on 
two axes.   Our codes need to run on multiple current systems from laptops to 
supercomputers, and on chips from multiple vendors.  Codes also need to be 
“future-proof” to run well on future architectures with minimal changes.

As we prepare for El Capitan, we’re seeing the need for memory abstractions 
that can handle both traditional separate GPU/CPU memory spaces as well as 
the single memory space of the MI300 APU.

We have already discussed abstractions such as Kokkos and RAJA, which hide 
the complexity of heterogeneous computing systems.

And of course anything that can help design, build, test, and deliver applications 
into production is of interest.
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§ Programming models and tools
— Abstractions to hide memory model complexity
— Abstractions such as RAJA and Kokkos for 

portability across architectures

§ Rapid prototyping of new applications

§ Environments for efficient development of 
simulations
— E.g., Integrating tools and services into Eclipse IDE

§ Heterogeneous computing systems

Productivity and performance portability
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Productivity Gain Porting Codes to EAS-3

Sierra El Capitan

§ Significant effort was required to port codes to RAJA 
in preparation for Sierra (Nvidia V100)

§ This effort paid off with much lower effort to get 
running on EAS-3 (AMD MI250, El Cap early access)



New approaches to engineering is another topic of interest and includes using 
machine learning for topological design optimization.  Some examples are 
shown here.

We are currently working on building modular applications for design 
optimization.  Taking advantage of existing numerical methods and physics 
models accelerates development.  Compared to monolithic approaches, it is also 
much easier to swap out or exchange physics, constraints, quantities of interest.
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§ Design optimization

§ Machine learning applied to design 

New approaches to engineering 

Owns design
• Optimization solvers 

(HiOp) 
• Parameterizations
• Quantities of interest

Owns physics
• Primal, adjoint solvers
• Finite element models
• Time-stepping 

methods

Design-dependent
loads, properties, shapes

Physics solution and 
design sensitivity

GPU-ready, 
flexible integrators

MFEM
Owns abstractions
• Mesh
• Finite element spaces

Optical sensor housing with 
negative thermal expansion

Non-axisymmetric features

4.5 hours on 64 nodes (CTS-1)
15.8% stiffer vs. uniform 
lattice for same massOptimal octet lattice rod 

diameter distribution (K. Swartz)



Finally, this slide is a catch all for algorithms and models that are of interest.  

Novel approaches to coupling of multi-physics at multiple scales is desired.

Algorithms for increasing performance of HPC systems is desired.

In the cases where Exascale HPC becomes less reliable, resilience and fail-over 
become important.

As processors and accelerators continue to advance there is a need to expose 
even more parallelism, and efficiency is more appropriately measured in wall 
time as compared to minimizing the number of operations

Reduced order models and their use in ensemble analysis is needed.

Stochastic algorithms such as stochastic optimization is possible because of 
Exascale.  

And finally, we should not forget about applied mathematics research and 
numerical methods that are specifically adapted to GPUs or other exascale 
enabling architectures.
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§ Novel approaches to coupling multiphysics/multiscale

§ Algorithms for increasing performance of HPC systems, e.g., latency hiding, reduction 
of synchronization, utilization of simultaneous execution

§ Support for resilience 

§ Exposing more parallelism at the cost of algorithm efficiency

§ Reduced order models and their use in ensemble analysis

§ Stochastic algorithms and adaptive algorithms

§ Applied math and numerical methods

Algorithms/models



The MFEM  library is just one example of NNSA efforts to develop numerical 
methods that are specifically tailored to GPUs.  High-order finite elements and 
matrix-free methods help optimize time to solution on GPU architectures.
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MFEM: LLNL’s Exascale Simulation Engine

Cutting-Edge Math GPU Acceleration Next-Gen Simulations

ü State-of the art PDE solvers

ü High-order finite elements

ü Mesh adaptivity and AMR

ü Open-source: mfem.org

High-order 
curved elements

Parallel non-
conforming AMR

ü Massively scalable

ü Laptops to exascale

ü Running on Frontier

ü Ready for El Capitan

ü Multi-physics

ü Design optimization

ü LLNL, SciDAC, ECP, ASCR

ü Academia, industry

WSC ALE 
hydrodynamics

ENG topology 
optimization1 GPU 4 GPU 1024 GPU



We anticipate that the CHIPS act will support university research in 
microelectronics. Be aware of potential synergies or opportunities to leverage 
such research in PSAAP activities.
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Microelectronics
CHIPS Act: DOD Microelectronics Commons addresses the Valley of Death
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Laboratory

Research Universities, 
Start ups face barriers 
to Technology 
Demonstration

Innovation Hubs boost 
research connections to 
facilitate prototypes targeted 
to regional market strengths

Core Facilities provide 
access to scale early stage 
prototyping, and engage 
with Industry and NSTC to 
burn down risk for 
integration of new 
technologies with 
commercial SOTA

Commercial and 
DoD Program 
InvestmentUniversity & USG

VC Investment

Commercial 
Industry

Defense 
Programs

Defense 
Industrial 
Base

Commercial adoption and 
optimization for Defense 
program demonstrators

5G/6G
Technology

Secure 
Edge/IoT 

Computing

AI HW at the 
Edge

Electronic 
Warfare

Commercial 
Leap Ahead 
Technologies

Quantum 
Technology

“Valley of Death”

Core Facilities
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Defense Program and 
Commercial Adoption

Demonstration of 
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Please do not overlook opportunities to use and extend the many open-source 
software resources developed at the NNSA labs.  There are many opportunities 
to collaborate with developers at the labs.
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Lab-sponsored open source software is ripe for collaboration
Don’t reinvent the wheel
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§ David Beckingsale

§ Jamie Bramwell

§ Bronis de Supinski

§ Erik Draeger

§ Charles Doutriaux

§ John Feddema

§ Cyrus Harrison

§ Rob Hoekstra

§ Judy Hill

§ Dan Laney

§ Katie Lewis

§ Tzanio Kolev

§ Anna Pietarila Graham

§ Tom Scogland

§ Galen Shipman

§ Tom Stitt

Thanks to those who helped provide material for these slides
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