
PSAAPIII Logo - Comp 1
Round 1 - Dec 11

Center for Understandable, Performant
Exascale Communication

University of New Mexico
University of Alabama

University of Tennessee at Chattanooga

Nicholas Bacon: Evaluating the Viability of LogGP for Modeling MPI Performance with
Non-contiguous Datatypes on Modern Architectures

Evelyn Namugwanya (UTC): Collective-Optimized FFTs

Carson Woods (UTC): Modeling and Benchmarking Irregular MPI Communication

Modling changes Introduction

Results

Evaluating the Viability of LogGP for Modeling MPI Performance with Non-contiguous Datatypes on Modern Architectures
Nicholas Bacon and Patrick Bridges | Department of Computer Science

In the original work by Keira Haskins, they explored the time differences between different versions of mpi and a simple
hand-packing loop on a 4d data structure. Their results showed (first graph) that it was almost never worth letting mpi handle the
packing and unpacking in a real-world application. We used our version of netgauge to extend this work and try to answer the
following questions.

1. How effectively do the LogGPS and LogGOPS models quantify communication performance of MPI implementations on
modern GPU systems when using simple primitive datatypes?

2. How effectively do the LogGPS and LogGOPS models quantify the performance of communication using MPI derived
datatypes?

3. How do the LogGPS and LogGOPS parameters for different MPI implementations change across a range of datatypes and
message sizes?

Modern architectures and communication systems software include complex hardware, communication abstractions, and
optimizations that make their performance difficult to measure, model, and understand. The communication abstractions such as
MPI's derived datatypes are a core component of modern high-performance computing (HPC) communication systems. These
abstractions are designed to ease programmability and allow the communication system to efficiently send, receive, and compute
on (e.g., reduce) complex data structures. Unfortunately, even highly-optimized versions of these abstractions have
wildly-varying performances when using realistic application data structures on modern GPU-based systems. In our initial tests,
even highly-optimized datatype engines such as MPICH/Yaksa and TEMPI often performed significantly (5%-50%) worse than
simple application data packing kernels when working on realistic application data layouts. Importantly, we have not found any
case where datatypes outperformed simple application packing kernels when doing GPU to GPU communication.

We modified versions of the existing Netgauge communication performance measurement tool and LogGOPS performance
model to accurately characterize the communication behavior of modern hardware, MPI abstractions, and implementations. This
includes analyzing their ability to model both GPU-aware communication in different MPI implementations and quantifying the
performance characteristics of different approaches to non-contiguous data communication on modern GPU systems. We apply
these techniques to quantify the performance of different implementations and optimization approaches to non-contiguous data
communication on a variety of systems, demonstrating that modern communication system design approaches can result in
widely varying and difficult-to-predict performance variation, even within the same hardware/communication software
combination.

1. The models measured using Netgauge capture some key features of MPI performance, particularly for mid-sized messages.
However, they also tend to consistently over-predict ping-pong communication times, particularly for very large and very
small messages.

2. In general, this data shows that LogGPS and LogGOPS modeling is more accurate when datatype packing and unpacking
costs are high compared to network communication costs. As a result, we conclude that our modified Netgauge-measured
LogGPS parameters appear to: (1) accurately model packing and unpacking costs; and (2) continue to systematically
overestimate network communication costs similar to the original Netgauge.

3. In the graph above we can see the trends and time change based on the data layout of the MPI vector. In the mvapich case, we
can see that going from a space matrix to a continuous vector does not affect timing drastically, but Spectrum has three orders
of magnitude slow-down when going to sparse data.

Figure 1a shows a simple example of sending two back-to-back
𝑘- byte messages between a Sender and Receiver. In networks
that allow communication-computation overlap, the network and
the CPU can progress independently. The 𝐺 and 𝑔 terms are used
to determine the network time required for a send and the 𝑂 and
𝑜𝑠 terms are used to determine the processor time required for a
send. The time required to complete a send operation is the
maximum of the network time and the processor time (i.e., the
point at which both the network and the processor have
completed the work necessary for a send).

Figure 1b shows a simple example of sending two back-to-back 𝑘-byte messages using our simple extension of the
LogGOPS model. The principal difference between this model and the original LogGOPS model is that, unlike the
original model, we explicitly account for the costs associated with moving data between host and device memory and
assembling non-contiguous data into Evaluating the Viability of LogGP for Modeling MPI Performance with
contiguous message buffers. To capture the impact of these costs, we model the per-message overheads (𝑜𝑠 and 𝑜𝑟) and
per-byte overhead (𝑂𝑠 and 𝑂𝑟) to include: (i) the time required for sending messages to (𝑜𝑠𝑒𝑛𝑑), and receiving
messages from (𝑜𝑟𝑒𝑐𝑣), the network; and (ii) the costs associated with preparing non-contiguous data for transmission
(𝑜𝑝𝑎𝑐𝑘) and the costs associated with processing non-contiguous data after reception (𝑜𝑢𝑛𝑝𝑎𝑐𝑘). These costs include
datatype packing or unpacking (including launching kernels to pack or unpack data directly in device memory),
copying data between host and device memory, creating scatter-gather lists, or other similar per-message or per-byte
costs associated with every send

CUP
ECS

Methodology

• While profiling Beatnik, we performed a couple of tests on one through eight nodes,
varying the number processes with various versions of MPI Advance’s Alltoallv.

• We had seven sets of tests, testing MPI_Alltoallv from standard MPI, Non-blocking
Alltoallv, Pairwise Alltoallv and multi-pair blocking exchange, multi-pair non-blocking
exchange, multi-pair test exchange from MPI Advance.

• In six of the seven sets performed, MPI Advance’s algorithms performed better than
the OpenMPI's Alltoallv.

• We also observed that multi-pair non-blocking exchange's performance stands out
as compared to other MPI Advance algorithms.

Conclusions
1. https://github.com/mpi-advance
2. https://github.com/CUP-ECS/beatnik/
3. https://icl.utk.edu/files/publications/2022/icl-
utk-1558-2022.pdf
4. https://hpc.llnl.gov/software/development-
environment-software/tau-tuning-and-
analysis-utilities
5. https://software.llnl.gov/Caliper/

References

Introduction

Collective-Optimized FFTs
Evelyn Namugwanya1, Amanda Bienz2, Derek Schafer2,Anthony Skjellum1 | 1UTC, 2UNM

• HeFFTe is a new FFT library designed for Exascale,
dominated by MPI_Alltoallv communication

• Key goal: make MPI_Alltoallv faster so HeFFTe is faster

• Beatnik is a benchmark for global communication based on
Pandya and Shkoller's 3D fluid interface "Z-Model" in the
Cabana/Cajita mesh framework.

• Beatnik bottlenecked by HeFFTe; it’s a good driver app.

• MPI Advance is a collection of MPI extension libraries
showcasing new APIs or optimizations of MPI APIs.

• MPI Advance includes faster MPI_Alltoallv variants

• We used Tau and Caliper to profile Beatnik, with a
specific focus on MPI_Alltoallv.

• We modified the HeFFTe library and replaced the
OpenMPI Alltoallv with MPI Advance’s Alltoallv.

• We tested six different setups of collective
communication:
o Non-blocking Alltoallv: sends all Isends and Irecvs

messages and waits for all to complete.
o Alltoallv pairwise: pairwise exchange.
o Multi-pair blocking exchange : combines Non-

blocking Alltoallv and Pairwise Alltoallv, uses Waitall.
o Multi-pair nonblocking exchange : Uses Waitany.
o Multi-pair test exchange : Uses Testany.
o Alltoallv: the OpenMPI Alltoallv

• Our goal is to see which setup is fastest in various
situations and vs. baseline performance.

.

Results

Applications using Irregular MPI
Communication

CUP
ECS

Differing block size parameter communication patterns between
CabanaMD and CLAMR mini-apps on Quartz[3].

• Currently, we are continuing to gather
parameterized data by instrumenting various real-
world applications.

• The applications being instrumented include
CLAMR[1], xRage[4], and Cabana-based proxy-apps
like CabanaMD[2].
• We intend on including more applications in the

future.
• Through this process, we extracted and replicated

the communication patterns and behavior of these
parameters in our benchmark.

• We utilized both empirical and Gaussian
distributions to recreate these patterns.

• Initial analysis revealed significant variations in
distributions across applications and parameters.

• Our benchmark proved effective at reproducing
communication patterns.

Results

After implementing an
empirical distribution
method for our
benchmark, we can
consistently recreate the
communication patterns
of an application within
our benchmark. Now we
can begin to examine the
impact that certain
communication
characteristics have on
communication
performance.

This work is discussed in
greater detail in a paper
that was submitted to
EuroMPI 2023[5]. It is
titled “Quantifying and
Modeling Irregular MPI
Communication.” It is
currently pending review.

Conclusio
ns 1. D. Nicholaeff, N. Davis, D. Trujillo,

& R. W. Robey (2012). Cell-Based
Adaptive Mesh Refinement
Implemented with General Purpose
Graphics Processing Units.

2. Mniszewski SM, Belak J, Fattebert J-
L, et al. Enabling particle
applications for exascale computing
platforms. The International Journal
of High Performance Computing
Applications. 2021;35(6):572-597.
doi:10.1177/10943420211022829

3. “Quartz.” HPC @ LLNL.
https://hpc.llnl.gov/hardware/comp
ute-platforms/quartz. (Jan. 2023)

4. Grove, John W. 2019. The xRage
Hydrodynamic Solver. (7 2019).
https: //doi.org/10.2172/1532686

5. Woods et al. Quantifying and
Modeling Irregular MPI
Communication. Manuscript
submitted for publication at EuroMPI
2023.

References

This work was performed with partial
support from the National Science
Foundation under Grants Nos. CCF-
2151020, CCF-1918987, CCF-1562306,
CCF-1822191, CCF-1821431, OAC-
1923980, OAC-1549812, OAC-1925603,
and OAC-2201497 and the U.S.
Department of Energy's National Nuclear
Security Administration (NNSA) under
the Predictive Science Academic Alliance
Program (PSAAP-III), Award DE-
NA0003966.

Acknowledgements

• Many applications rely on
irregular MPI communication.

• Data irregularity stems from the
exchanged data evolving
throughout application runtime.

• The exact communication
patterns are undetermined at
compile time.

• The behavior and performance
varies across applications.

• These factors make it
challenging to characterize and
improve the performance of
irregular communication
patterns.

Background
• Developed a synthetic

benchmark that replicates
communication patterns of
real-world scientific
applications.

• The benchmark utilizes
parameterized communication
data without computational
overhead.

• Enables examination and
understanding of
communication performance
in a consistent context.

Methods

Diagram of general process from instrumenting applications to replicating
communication patterns in the synthetic benchmark.

Modeling and Benchmarking Irregular MPI Communication
Carson Woods1, Derek Schafer2, Patrick Bridges2, Anthony Skjellum1

Extracted Parameters Meaning

N-owned Amount of data “owned” by an
individual process (in bytes).

N-remote Amount of data to be sent
from one process to another.

Block-Size
The size of the messages to
be sent when communicating
between processes.

Stride The number of bytes between
blocks.

Communication-Partners
The number of processes that
a single process will exchange
data with.

Comparison of parameter distribution in xRage[4] run vs the
benchmark recreation.

CLAM
R[1]

Instrumentation:
Extracts parameters for later analysis from

applications; this is done by manually instrumenting
application code.

Cabana
MD[2]

xRage[4
]

etc.

Analysis:
Calculates distribution statistics (mean, standard
deviation) from parameters and performs data

binning for future empirical recreation of parameter
distributions.

Benchmark:
Uses distribution statistics or data bins for each

parameter to synthetically recreate communication
patterns for analysis, profiling, and further study.

1. UTC
2. UN

M

