Center for Understandable, Performant
Exascale Communication

University of New Mexico
University of Alabama
University of Tennessee at Chattanooga

Nicholas Bacon: Evaluating the Viability of LogGP for Modeling MPI Performance with
Non-contiguous Datatypes on Modern Architectures

Evelyn Namugwanya (UTC): Collective-Optimized FFTs

% Carson Woods (UTC): Modeling and Benchmarking Irregular MPI Communication Lo
e pSAAR-

AsSC #lll

Center for Understandable

Performant Exascale m THE UNIVERSITY OF

NEW MEXICO

CUP Communication Systems

ECS

Evaluating the Viability of LogGP for Modeling MPI Performance with Non-contiguous Datatypes on Modern Architectures
Nicholas Bacon and Patrick Bridges | Department of Computer Science

Introduction Modling changes

Modern architectures and communication systems software include complex hardware, communication abstractions, and Figure 1a shows a simple example of sending two back-to-back v,

optimizations that make their performance difficult to measure, model, and understand. The communication abstractions such as k- byte messages between a Sender and Receiver. In networks “

MPI's denved datatypes are a core component of modern high-performance puting (HPC) ication systems. These that allow communication-computation overlap, the network and e 2

b are d d to ease pr bility and allow the ication system to efficiently send, receive, and compute the CPU can progress independently. The G and g terms are used 5 5

on (e.g., reduce) complex data structures. Unfortunately, even highly-optimized versions of these abstractions have to determine the network time required for a send and the O and a (@) Original L“‘f‘(’f ‘::‘“"

wildly-varying performances when using realistic application data structures on modern GPU-based systems. In our initial tests, os terms are used to determine the processor time required for a A - —

even highly-optimized datatype engines such as MPICH/Yaksa and TEMPI often performed significantly (5%-50%) worse than send. The time required to complete a send operation is the G B h

simple application data packing kernels when working on realistic application data layouts. Importantly, we have not found any maximum of the network time and the processor time (i.e., the = t Crmy e

case where datatypes outperformed simple application packing kernels when doing GPU to GPU communication. point at which both the network and the processor have LN x
completed the work necessary for a send). (b) LogGOPS model w/ packing & unpacking message data

‘We modified verslons of the exlstmg Netgauge communication performance measurement tool and LogGOPS performance .) . X . .

model to ly ch ize the ion behavior of modern hardware, MPI abstractions, and implementations. This Figure 1b shows a simple example of sending two back-to-back k-byte messages using our simple extension of the

includes analyzing their ability to model both GPU-aware communication in different MPI implementations and quantifying the L‘fg.GOPS model. The principal difference between this model and the original LogGOPS model is that, unlike the

performance ct istics of different approaches to non-conti data ication on modern GPU systems. We apply original model, we explicitly account for the costs associated with moving data between host and device memory and

these techniques to quantify the performance of different impl and optimization app hes to non-contiguous data assembling non-contiguous data into Evaluating the Viability of LogGP for Modeling MPI Performance with

communication on a variety of systems, demonstrating that modern ication system design app oo e il fm contiguous message buffers. To capture the impact of these costs, we model the per-message overheads (os and or) and

widely varying and difficult-to-predict performance variation, even within the same hardware/communication software per-byte overhead (Os and Or) to include: (i) the time required for sending messages to (osend), and receiving

combination. messages from (orecv), the network; and (ii) the costs associated with preparing non-contiguous data for transmission
(opack) and the costs associated with processing non-contiguous data after reception (ounpack). These costs include
datatype packing or unpacking (including launching kernels to pack or unpack data directly in device memory),
copying data between host and device memory, creating scatter-gather lists, or other similar per-message or per-byte
costs associated with every send

Results

AN 13,4

LIS s MFICH 444 Spmctavm A1 444

Lie plot wie ervor bars for s facwe W)

. Pk ’ < 4 | o v {= - -
o . - ¥
\
o . e {
] ‘ d
[-l | »*
. B = - a
=, Sttt T it I i » s
o . ~ A R A R R R — Jl.uen-n-:-asn‘“ ‘.o-.nasaunnﬁif
In the original work by Keira Haskins, they explored the time diffc bet different i f mpi and impl . -
hand. kg 1 }Zld a h)f 1 lts showed (fi ! ere]l:ce; éween 11 cren Verslon]s“o ?“pl an. ha lemp © 1. The models measured using Netgauge capture some key features of MPI per particularly for mid d
and-packing loop on a ata structure. Their results showed (first graph) that it was almost never worth letting mpi handle the However, they also tend to y prodict piag.p Ao (e e 1y for wery Larse andlvery
packing and unpacking in a real-world application. We used our version of netgauge to extend this work and try to answer the small messages.
following questions. 2. In general, this data shows that LogGPS and LogGOPS modeling is more accurate when datatype packing and unpacking
£ high k I lude th: dified N d
. . L. . . costs are higl d to networl ion costs. As a result, we conclude that our modified Netgauge-measure
1. How effectively do the LogGPS and LogGOPS models quantify communication performance of MPI implementations on LogGPS parameters appear to: (1) accurately model packing and unpacking costs; and (2) continue to systematically
modern GPU systems when using simple primitive datatypes? network ion costs similar to the original Netgauge.
2. How effectively do the LogGPS and LogGOPS models quantify the performance of communication using MPI derived 3. In the graph above we can see the trends and time change based on the data layout of the MPI vector. In the mvapich case, we
datatypes? can see that going from a space matrix to a continuous vector does not affect timing drastically, but Spectrum has three orders
3. How do the LogGPS and LogGOPS parameters for different MPI implementations change across a range of datatypes and StmaeaisdebloydornviEnfeoheinbpaneay

message sizes?

Performant Exascale
Communication Systems

CUP
ECS

Introduction

HeFFTe is a new FFT library designed for Exascale,
dominated by MPI_Alltoallv communication

Key goal: make MPI_Alltoallv faster so HeFFTe is faster

Beatnik is a benchmark for global communication based on
Pandya and Shkoller's 3D fluid interface "Z-Model" in the
Cabana/Cajita mesh framework.

Beatnik bottlenecked by HeFFTe; it's a good driver app.

MPI Advance is a collection of MPI extension libraries
showcasing new APIs or optimizations of MPI APIs.

MPI Advance includes faster MPI_Alltoallv variants

Methodology

* We used Tau and Caliper to profile Beatnik, with a
specific focus on MPI_Alltoallv.
» We modified the HeFFTe library and replaced the
OpenMPI Alltoallv with MP1 Advance’s Alltoallv.
» We tested six different setups of collective
communication:
o Non-blocking Alltoallv: sends all Isends and Irecvs
messages and waits for all to complete.
o Alltoallv pairwise: pairwise exchange.
o Multi-pair blocking exchange : combines Non-
blocking Alltoallv and Pairwise Alltoallv, uses Waitall.
o Multi-pair nonblocking exchange : Uses Waitany.
o Multi-pair test exchange : Uses Testany.
o Alltoallv: the OpenMPI Alltoallv

* Our goal is to see which setup is fastest in various
situations and vs. baseline performance.

Center for Understandable

(=

Collective-Optimized FFTs

Evelyn Namugwanya!, Amanda Bienz2, Derek Schafer?, Anthony Skjellum!| 'UTC, 2UNM

Algorithm 1: Pairwise Exchange

Input: P {process id}
n {number of processes}
args {arguments passed to MPI_Alltoallv}

fori —0tondo
Psend =p+i mod n
Precy =p+n—i modn

Send message to pseng and receive message from precy

Algorithm 2: Non-Blocking

Input: p {process id}
n {number of processes}
args {arguments passed to MPI_Alltoallv}

fori « 0tondo
Psend =p +i mod n
Precv =p+n—i modn
Initialize non-blocking send to psend
Initialize non-blocking receive from precy

Wait for all sends and receives to complete

Conclusions

« While profiling Beatnik, we performed a couple of tests on one through eight nodes,
varying the number processes with various versions of MPI Advance’s Alltoallv.
* We had seven sets of tests, testing MPI_Alltoallv from standard MPI, Non-blocking

THE UNIVERSITY OF TENNESSEE

CHATTANOOGA

Results

1 Node, 8 Processes

5
4
| u ‘

Version of altoal sigarthes.

8 Nodes, b4 Processes

t
H

References

1. https://github.com/mpi-advance
. https: com/CUP-EC

3. https://icl.utk.eduffiles/publications/2022/icl-

utk-1558-2022.pdf

4 N Iinl

Alltoallv, Pairwise Alltoallv and multi-pair blocking exchange, multi-pair non-blocking : P

exchange, multi-pair test exchange from MPI Advance.

the OpenMPl's Alltoallv.

as compared to other MPI Advance algorithms.

In six of the seven sets performed, MPI Advance’s algorithms performed better than

9
analysis-utilities
5. https://software.llnl.gov/Caliper/

We also observed that multi-pair non-blocking exchange's performance stands out

Center for Understandable

Performant Exascale
CupP

ECS

Communication Systems

THE UNIVERSITY OF TENNESSEE

CHATTANOOGA

Modeling and Benchmarking Irregular MPI Communication

Carson Woods!, Derek Schafer?, Patrick Bridges?, Anthony Skjellum!

~N

Background Applications using Irregular MPI

* Many applications rely on CLAM Cabana xRages ete.
. . . Rpy MDpy 1
irregular MPI communication.)

* Data irregularity stems from the
exchanged data evolving
throughout application runtime.

* The exact communication
patterns are undetermined at

Extracts parameters fol

Analysis:
Caleulates distribution statistics (mean, standard

compile time. e
N deviation) from parameters and performs data
¢ The behavior and performance binning for future empirial recreation of parameter
varies across applications. iy, o

* These factors make it
challenging to characterize and
improve the performance of

Benchmark:
Uses distribution statistics or data bins for each
parameter to synthetically recreate communication
patterns for analysis, profiling, and further study.

1rregu]ar communication
patterns. Diagram of general process from instrumenting applications to replicating
communication patterns in the synthetic benchmark.
Results . CLAMR Distribution of Block Sizes

Currently, we are continuing to gather
parameterized data by instrumenting various real-
world applications.

The applications being instrumented include

Methods

Developed a synthetic
benchmark that replicates
communication patterns of
real-world scientific
applications.

The benchmark utilizes
parameterized communication
data without computational
overhead.

Enables examination and
understanding of
communication performance
111 a COLSISLIEIL COMEXL.

Conclusio

r implementing an
empirical distribution
method for our
benchmark, we can
consistently recreate the
communication patterns
of an application within
our benchmark. Now we '
can begin to examine the

1.UTC
2.UN

M
Extracted Parameters

Communication-Partners

X
Distribution of N-Owned Size

Meaning

Amount of data “owned” by an
individual process (in bytes).
Amount of data to be sent
from one process to another.
The size of the messages to
be sent when communicating
between processes.

The number of bytes between
blocks.

The number of processes that
a single process will exchange
data with.

References

1. D. Nicholaeff, N. Davis, D. Trujillo,
& R. W. Robey (2012). Cell-Based
Adaptive Mesh Refinement
Implemented with General Purpose
Graphics Processing Units.
Mniszewski SM, Belak J, Fattebert J-
L, et al. Enabling particle
applications for exascale computing

b

platforms. The International Journal
of High Performance Computing
Applications. 2021:35(6):572-597
doi:10.1177/10943420211022829

CLAMR,}, xRagey,;, and Cabana-based proxy-apps . - e 20000 20006 30800 ~ 3. “Quartz.” HPC @ LLNL.
like Cab: I];mg P proxy-app impact that certain ! Stz (by : https://hpe.lInl. gov/hardware/comp
ke Laban: 2 5 L . communication i ute-platforms/quartz. (Jan. 2023)
* We intend on including more applications in the e characteristics have on saammchmark Hecreaton. 4. Grove, John W. 2019. The xRage
future Stoe s p———r Hydrodynamic Solver. (7 2019).
; : CabanaMD Distribution of Block Sizes https: //doi.org/10.2172/1532686
 Through this process, we extracted and replicated performance. 5. Woods et al. Quantifying and

the communication patterns and behavior of these
parameters in our benchmark.

We utilized both empirical and Gaussian
distributions to recreate these patterns.

Initial analysis revealed significant variations in
distributions across applications and parameters.
Our benchmark proved effective at reproducing
communication patterns.

Differing block size parameter communication patterns between
pa §

1D and CLAMR, Quart=s

This work is discussed in
greater detail in a paper
that was submitted to
EuroMPI 2023 5. It is
titled “Quantifying and

Modeling Irregular MPI ok

Communication.” It is
currently pending review.

Comparison of parameter distribution in xRage[s run vs the

Modeling Irregular MPI
Communication. Manuseript

AtKknowledgements
This work was performed with partial
support from the National Science
Foundation under Grants Nos. CCF-
2151020, CCE-1918987, CCF-1562306,
CCF-1822191, CCF-1821431, OAC-

‘,.E] 1923980, OAC-1549812, OAC-1925603,

and OAC-2201497 and the U.S.
Department of Energy's National Nuclear
Security Administration (NNSA) under
the Predictive Science Academic Alliance
Program (PSAAP-III), Award DE-
NA0003966.

