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Evaluating the Viability of LogGP for Modeling MPI Performance with Non-contiguous Datatypes on Modern Architectures
Nicholas Bacon and Patrick Bridges |  Department of Computer Science 

In the original work by Keira Haskins, they explored the time differences between different versions of mpi and a simple 
hand-packing loop on a 4d data structure. Their results showed (first graph ) that it was almost never worth letting mpi handle the 
packing and unpacking in a real-world application. We used our version of netgauge to extend this work and try to answer the 
following questions.  

1. How effectively do the LogGPS and LogGOPS models quantify communication performance of MPI implementations on 
modern GPU systems when using simple primitive datatypes?

2. How effectively do the LogGPS and LogGOPS models quantify the performance of communication using MPI derived 
datatypes?

3. How do the LogGPS and LogGOPS parameters for different MPI implementations change across a range of datatypes and 
message sizes?

Modern architectures and communication systems software include complex hardware, communication abstractions, and 
optimizations that make their performance difficult to measure, model, and understand. The communication abstractions such as 
MPI's derived datatypes are a core component of modern high-performance computing (HPC) communication systems. These 
abstractions are designed to ease programmability and allow the communication system to efficiently send, receive, and compute 
on (e.g., reduce) complex data structures. Unfortunately, even highly-optimized versions of these abstractions have 
wildly-varying performances when using realistic application data structures on modern GPU-based systems. In our initial tests, 
even highly-optimized datatype engines such as MPICH/Yaksa and TEMPI often performed significantly (5%-50%) worse than 
simple application data packing kernels when working on realistic application data layouts. Importantly, we have not found any 
case where datatypes outperformed simple application packing kernels when doing GPU to GPU communication.

We modified versions of the existing Netgauge communication performance measurement tool and LogGOPS performance 
model to accurately characterize the communication behavior of modern hardware, MPI abstractions, and implementations. This 
includes analyzing their ability to model both GPU-aware communication in different MPI implementations and quantifying the 
performance characteristics of different approaches to non-contiguous data communication on modern GPU systems. We apply 
these techniques to quantify the performance of different implementations and optimization approaches to non-contiguous data 
communication on a variety of systems, demonstrating that modern communication system design approaches can result in 
widely varying and difficult-to-predict performance variation, even within the same hardware/communication software 
combination.

1. The models measured using Netgauge capture some key features of MPI performance, particularly for mid-sized messages. 
However, they also tend to consistently over-predict ping-pong communication times, particularly for very large and very 
small messages.

2. In general, this data shows that LogGPS and LogGOPS modeling is more accurate when datatype packing and unpacking 
costs are high compared to network communication costs. As a result, we conclude that our modified Netgauge-measured 
LogGPS parameters appear to: (1) accurately model packing and unpacking costs; and (2) continue to systematically 
overestimate network communication costs similar to the original Netgauge.

3. In the graph above we can see the trends and time change based on the data layout of the MPI vector. In the mvapich case, we 
can see that going from a space matrix to a continuous vector does not affect timing drastically, but Spectrum has three orders 
of magnitude slow-down when  going to sparse data. 

Figure 1a shows a simple example of sending two back-to-back 
𝑘- byte messages between a Sender and Receiver. In networks 
that allow communication-computation overlap, the network and 
the CPU can progress independently. The 𝐺 and 𝑔 terms are used 
to determine the network time required for a send and the 𝑂 and 
𝑜𝑠 terms are used to determine the processor time required for a 
send. The time required to complete a send operation is the 
maximum of the network time and the processor time (i.e., the 
point at which both the network and the processor have 
completed the work necessary for a send).

Figure 1b shows a simple example of sending two back-to-back 𝑘-byte messages using our simple extension of the 
LogGOPS model. The principal difference between this model and the original LogGOPS model is that, unlike the 
original model, we explicitly account for the costs associated with moving data between host and device memory and 
assembling non-contiguous data into Evaluating the Viability of LogGP for Modeling MPI Performance with  
contiguous message buffers. To capture the impact of these costs, we model the per-message overheads (𝑜𝑠 and 𝑜𝑟) and 
per-byte overhead (𝑂𝑠 and 𝑂𝑟) to include: (i) the time required for sending messages to (𝑜𝑠𝑒𝑛𝑑 ), and receiving 
messages from (𝑜𝑟𝑒𝑐𝑣 ), the network; and (ii) the costs associated with preparing non-contiguous data for transmission 
(𝑜𝑝𝑎𝑐𝑘 ) and the costs associated with processing non-contiguous data after reception (𝑜𝑢𝑛𝑝𝑎𝑐𝑘 ). These costs include 
datatype packing or unpacking (including launching kernels to pack or unpack data directly in device memory), 
copying data between host and device memory, creating scatter-gather lists, or other similar per-message or per-byte 
costs associated with every send
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Methodology

• While profiling Beatnik, we performed a couple of tests on one through eight nodes, 
varying the number processes with various versions of MPI Advance’s Alltoallv.

• We had seven sets of tests, testing MPI_Alltoallv from standard MPI, Non-blocking 
Alltoallv,  Pairwise Alltoallv  and multi-pair blocking exchange, multi-pair non-blocking 
exchange, multi-pair test exchange from MPI Advance.

• In six of the seven sets performed, MPI Advance’s algorithms performed better than 
the OpenMPI's Alltoallv.

• We also observed that multi-pair non-blocking exchange's performance stands out 
as compared to other MPI Advance algorithms.

Conclusions
1. https://github.com/mpi-advance
2. https://github.com/CUP-ECS/beatnik/
3. https://icl.utk.edu/files/publications/2022/icl-
utk-1558-2022.pdf
4. https://hpc.llnl.gov/software/development-
environment-software/tau-tuning-and-
analysis-utilities
5. https://software.llnl.gov/Caliper/
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Evelyn Namugwanya1, Amanda Bienz2, Derek Schafer2,Anthony Skjellum1 | 1UTC, 2UNM

• HeFFTe is a new FFT library designed for Exascale, 
dominated by MPI_Alltoallv communication

• Key goal: make MPI_Alltoallv faster so HeFFTe is faster

• Beatnik is a benchmark for global communication based on 
Pandya and Shkoller's 3D fluid interface "Z-Model" in the 
Cabana/Cajita mesh framework.

• Beatnik bottlenecked by HeFFTe; it’s a good driver app.

• MPI Advance is a collection of MPI extension libraries 
showcasing new APIs or optimizations of MPI APIs.

• MPI Advance includes faster MPI_Alltoallv variants

• We used Tau and Caliper to profile Beatnik, with a 
specific focus on MPI_Alltoallv.

• We modified the HeFFTe library and replaced the 
OpenMPI Alltoallv with MPI Advance’s Alltoallv.

• We tested six different setups of collective 
communication:
o Non-blocking Alltoallv: sends all Isends and Irecvs 

messages and waits for all to complete.
o Alltoallv pairwise: pairwise exchange.
o Multi-pair blocking exchange :  combines Non-

blocking Alltoallv and Pairwise Alltoallv, uses Waitall.
o Multi-pair nonblocking exchange : Uses Waitany.
o Multi-pair test exchange : Uses Testany.
o Alltoallv: the OpenMPI Alltoallv

• Our goal is to see which setup is fastest in various 
situations and vs. baseline performance.

.

Results
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Differing block size parameter communication patterns between 
CabanaMD and CLAMR mini-apps on Quartz[3]. 

• Currently, we are continuing to gather 
parameterized data by instrumenting various real-
world applications.

• The applications being instrumented include 
CLAMR[1], xRage[4], and Cabana-based proxy-apps 
like CabanaMD[2].
• We intend on including more applications in the 

future. 
• Through this process, we extracted and replicated 

the communication patterns and behavior of these 
parameters in our benchmark.

• We utilized both empirical and Gaussian 
distributions to recreate these patterns.

• Initial analysis revealed significant variations in 
distributions across applications and parameters. 

• Our benchmark proved effective at reproducing 
communication patterns. 

Results

After implementing an 
empirical distribution 
method for our 
benchmark, we can 
consistently recreate the 
communication patterns 
of an application within 
our benchmark. Now we 
can begin to examine the 
impact that certain 
communication 
characteristics have on 
communication 
performance. 

This work is discussed in 
greater detail in a paper 
that was submitted to 
EuroMPI 2023[5]. It is 
titled “Quantifying and 
Modeling Irregular MPI 
Communication.” It is 
currently pending review. 

Conclusio
ns 1. D. Nicholaeff, N. Davis, D. Trujillo, 

& R. W. Robey (2012). Cell-Based 
Adaptive Mesh Refinement 
Implemented with General Purpose 
Graphics Processing Units.

2. Mniszewski SM, Belak J, Fattebert J-
L, et al. Enabling particle 
applications for exascale computing 
platforms. The International Journal 
of High Performance Computing 
Applications. 2021;35(6):572-597. 
doi:10.1177/10943420211022829

3. “Quartz.” HPC @ LLNL. 
https://hpc.llnl.gov/hardware/comp
ute-platforms/quartz.  (Jan. 2023)

4. Grove, John W. 2019. The xRage 
Hydrodynamic Solver. (7 2019). 
https: //doi.org/10.2172/1532686

5. Woods et al. Quantifying and 
Modeling Irregular MPI 
Communication. Manuscript 
submitted for publication at EuroMPI 
2023. 
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• Many applications rely on 
irregular MPI communication.

• Data irregularity stems from the 
exchanged data evolving 
throughout application runtime. 

• The exact communication 
patterns are undetermined at 
compile time.

•  The behavior and performance 
varies across applications. 

• These factors make it 
challenging to characterize and 
improve the performance of 
irregular communication 
patterns. 

Background
• Developed a synthetic 

benchmark that replicates 
communication patterns of 
real-world scientific 
applications.

• The benchmark utilizes 
parameterized communication 
data without computational 
overhead.

• Enables examination and 
understanding of 
communication performance 
in a consistent context.

Methods

Diagram of general process from instrumenting applications to replicating 
communication patterns in the synthetic benchmark. 

Modeling and Benchmarking Irregular MPI Communication
Carson Woods1, Derek Schafer2, Patrick Bridges2, Anthony Skjellum1 

Extracted  Parameters Meaning

N-owned Amount of data “owned” by an 
individual process (in bytes). 

N-remote Amount of data to be sent 
from one process to another. 

Block-Size
The size of the messages to 
be sent when communicating 
between processes. 

Stride The number of bytes between 
blocks. 

Communication-Partners
The number of processes that 
a single process will exchange 
data with. 

Comparison of parameter distribution in xRage[4] run vs the 
benchmark recreation.  

CLAM
R[1]

Instrumentation:
Extracts parameters for later analysis from 

applications; this is done by manually instrumenting 
application code. 

Cabana
MD[2]

xRage[4
]

etc.

Analysis:
Calculates distribution statistics (mean, standard 
deviation)  from parameters and performs data 

binning for future empirical recreation of parameter 
distributions. 

Benchmark:
Uses distribution statistics or data bins for each 

parameter to synthetically recreate communication 
patterns for analysis, profiling, and further study. 
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