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PERFORMANCE AND ACCURACY OF MACHINE LEARNING POTENTIALS
DIONYSIOS SEMA, YEONGSU CHO, NGOC NGUYEN, YOUSSEF MARZOUK, NICOLAS HADJICONSTANTINOU, HEATHER KULIK

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

INTRODUCTION
We introduce the proper orthogonal descriptors for efficient
and accurate interatomic potentials of complex chemical
systems [1, 2, 3]. We compose the proper orthogonal de-
scriptors to develop two interatomic potentials by express-
ing the per-atom energies as a linear and then as a linear
and quadratic combination of proper orthogonal descrip-
tors. We demonstrate the weak and strong scaling of these
potentials and perform MD simulations to calculate mate-
rial properties. We also perform MD simulations using Al-
legro [4] on complex systems to model the oxidation process
of Hf and map the vapor-liquid dome of Al. Finally, we use
POD and Allegro for accurate prediction of melting points
and mechanical properties of our target systems.

E(3) EQUIVARIANT DEEP NNS

Figure 1: Allegro architecture (left) and the component of each
layer (right). Features in the invariant and equivariant latent
spaces interact at each layer with tensor products.

The Allegro Network contains separate latent spaces for in-
variant features (scalar, rotation order l = 0) and equivari-
ant features of rotation order l > 0. The 2-body interac-
tions are encoded with Bessel basis functions and a poly-
nomial envelope and ACE-like many body interactions are
constructed in each layer with: Norder = Nlayers + 2. The
final output are pairwise energies, Eij

LITHIUM ION DIFFUSIVITY

Figure 2: Simulation of Lithium ion diffusivity using AIMD, POD,
and Allegro [5]. Our results show the ability of linear POD to ac-
curately model diffusion in Li superionic conductors.

VAPOR-LIQUID EQUILIBRIA

Figure 3: Prediction of vapor-liquid Al phases using SNAP,
POD, Allegro, and EAM. The critical point for the experiment is
(⇢c, Tc) =

�
0.745g/cm3, 6500K

�
. POD matches the experimental

data better than Allegro, SNAP and the empirical EAM potentials.

ONGOING RESEARCH AND INTEGRATION
We plan to develop NN/GCN potentials based on the proper orthogonal descriptors. We plan to equip POD potentials with
UQ and active learning methods developed by our CESMIX team. We are also working on a Kokkos implementation to
gain significant performance gains using multiple GPUs. As we aim to make the POD potentials available to the LAMMPS
community, we would like to collaborate the DOE labs to implement POD models in LAMMPS and FitSNAP.
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PERFORMANCE SCALING

Figure 4: Accuracy comparison of different MLIP models for InP
[3] (top) and performance scaling of POD using LAMMPS/ML-
POD. For weak scaling (left), we performed MD on various HfO2

sized systems on 36 cores. For strong scaling (right), we performed
MD simulations of 1M HfO2 atoms.

MELTING AND MECHANICAL QOIS

Figure 5: Predictions of the melting point of Hf (left) and HfO2

(right) for POD and Allegro. The ML-IAPs exhibit close aggree-
ment with the experimental values.

Figure 6: Predictions of mechanical properties for Hf, HfO2 (left)
and HfB2 (right) for POD at 0K and room temperature in compar-
ison with DFT and experiments.

PROPER ORTHOGONAL DESCRIPTORS
We introduce the following set of snapshots on (rmin, rmax):

⇠`(rij ,⌘) = V
(2)(rij ,⌘,µ`), ` = 1, . . . , Ns (1)

and compute the covariance matrix
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We then solve the eigenvalue problem Ca = �a to obtain
the orthogonal basis functions
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mn , and ⌘ are found by solving a

nonlinear least-squares regression against DFT data.
Extension to multi-element systems is carried out by com-
puting the PODs in (2) for different atom types. The com-
plexity of the resulting POD potentials is O(NN

2
nNf), where

Nn is the number of neighbors and Nf is the number of ba-
sis functions. The complexity of the multi-element SNAP
potential is O(NNnN

2
f N

2
e ). Hence, the cost ratio between

multi-element SNAP and POD potentials is NfN
2
e /Nn.
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INTRODUCTION
The development of an accurate and transferable
machine-learned interatomic potentials (ML-IAPs)
can take several months and requires computing
resources and expertise across disciplines. In ac-
tive learning approaches, we can use uncertainty
metrics from an ensemble of trained potentials
to drive an active learning approach, expand our
datasets with additional DFT calculations and re-
train the next generation of ML-IAPs. In this pro-
cess, data generation is the most time-consuming
part. Our goal is to accelerate this process and
achieve potential-in-a-day development cycles. To
this end, we propose a E(3)-equivariant ML-DFT
that can be used as a proxy DFT model to acceler-
ate DFT calculations or perform DFT calculations
that predict the electron density, energy and atomic
forces of large and complex systems (O(105) atoms)
that are intractable for regular DFT codes.

SELECTION SCHEME
We use a minimax sampling method to select
M configurations from a set of K configurations
{Ck}

K
k=1 with M ⌧ K. Define the similarity matrix

Sij =
D(Ci) ·D(Cj)

kD(Ci)kkD(Cj)k
, i, j = 1, . . . ,K, (1)

where D(Ci) is a vector of descriptors for Ci. Choose
a set of M indices {i1, . . . , iM}, where the first two
indices are

(i1, i2) = arg min
1i,j,N

Sij (2)

and, for m = 3, . . . ,M ,

im = arg min
1iN

max
j2{i1,...,im�1}

Sij . (3)

This method is used in the following algorithm.

AUTOMATIC CONFIGURATION GENERATION

Figure 1: Generating and selecting configurations for DFT calculations. An atomic configuration C of N atoms is de-
scribed by 6 lattice parameters (a, b, c,↵,�, �), atom positions {xn}Nn=1, and atomic numbers {Zn}Nn=1. Deformation
groups are generated by varying length parameters (length group), angle parameters (angle group), and all lattice
parameters (lattice group). Displacement groups are created by randomly displacing atom positions within a given
percentage of length parameters. Defect groups are created by removing one or more atoms (vacancy group), inserting
one or more atoms (interstitial group), or displacing one particular atom (dislocation group). K is O(104), whereas M

is O(103). The number of selected configurations is usually 100 times less than the number of initial configurations.

RESULTS

Figure 2: Electron density predictions of diamond for ML-DFT (left), DFT (center) and error (right).

Figure 3: Electron density predictions of 2-layer graphene for ML-DFT (left), DFT (center) and error (right).

E(3)-GCN ELECTRON DENSITY
The electron density is a scalar value over all 3D
space. We typically represent it using a "basis set".
The functions of the basis set have the mathematical
form:

�l,m = Y m
l exp(�↵l,mkr �Rik

2), (4)

where the first term are the spherical harmonics,
and the second is a Gaussian radial basis. The den-
sity on a given atom, i, is represented by a linear
combination of the basis functions projected onto
a delta Dirac function (the origin of DFT formula-
tion). Each basis function has a coefficient that is
the weight of that function’s contribution:

⇢i =
X

�

�(r � r�)k �(r)k
2=

X

l

Cl,m
i �l,m. (5)

We perform DFT runs with pyscf with pbc and
project the electron density onto a density fitting
basis. We calculate the 3-center 2e tensor integral,
P |ij, and the 2c2e integral, P |Q:

We can then extract the final irreps that are
determined for each atom type, following the
approach of Dunlap et al. [1]. The coefficients
and exponents of the basis functions is the data
we will train the model with. The raw data is
subtracted from the density of the isolated atoms
and converted to a molecular graph.
The GCN contains 3 layers of fully connected ten-
sor products with gated block non-linearities. The
input are the coordinates and atoms types concate-
nated to the radial basis as a one-hot vector of
length, N , with irreps Nxoe. The hidden features
have 16 copies with lmax = 4 with even and odd
parity, p = {�1, 1}. The cutoff radius was set to
rcut = 4Å.
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FUTURE WORK
The ML-DFT model can also act a an ML-IAP. In-
terfacing with the DFT code, pyscf, we can use
the basis function to reconstruct the wavefunction
and predict the energy and atomic forces, from the
Hellmann-Feyman Theorem:
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A .

The ML-DFT model can also be differentiated with
jax/Enzyme as the AD backend and be used to pre-
dict crystal structures. Next steps include:

• Electron structure prediction for large systems

• Verify that ML-DFT model obeys the 17
known exact constraints in DFT

• ML functionals that bridge that gap between
low rung DFT and CCSD level of theory

• Performance comparison with DFT codes

• JAX-LAMMPS interface for AIMD

CODE AVAILABILITY
[1] https://github.com/chemshift/
equivariant_electron_density
[2] https://github.com/JoshRackers/
equivariant_electron_density
[3] https://github.com/fishjojo/
pyscfad



Developing Machine-Learning Interatomic Potentials with
Spencer Wyant, Youssef Marzouk 

(with package contributions from Emmanuel Lujan, Dallas Foster, Joanna Zou, and other CESMIX contributors)

When performing molecular dynamics (MD), the motion of a given particle i in a system 
of N atoms is governed by Newton’s equation of motion:

−∇!𝐸 𝒓, 𝒛 = 𝑭! 𝒓, 𝒛 = 𝑚!
𝑑"𝒓!
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Potential Energy Surface 
(PES)
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ℛ ≔ %
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The PES maps the positions and chemical identities of each atom in the system to 
the total potential energy (in the absence of external forces). A model of the PES 
should be capable of treating systems with arbitrary numbers of atoms. 
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While density functional theory (DFT) calculations can provide an accurate PES and 
downstream properties, their computational cost and O(N3) scaling prevents 
accessing systems larger than a few hundred atoms and timescales beyond tens of 
picoseconds. Machine-learning interatomic potentials (MLIPs), which leverage 
flexible models trained on DFT-computed forces and energies, act as a bridge to the 
larger spatial and temporal scales accessed with traditional MD methods, bringing 
the ab initio accuracy of more expensive methods to these scales.
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Key Features of 
MLIPs
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Constraints

• Minimum Inference Speed
Need fast force routines, especially if 
simulating long time scales and/or many 
atoms

• Data Budget
Since DFT calculations are expensive, want to 
minimize # of fitting data needed (even more 
so if using more expensive methods like 
CCSD)

Both constraints depend on 
available compute resources

Example Problems
Thermal Properties

Hafnium  Oxidation

High-Throughput Diffusivity Computation

Need to Select and/or Optimize

1. Model Class
(e.g., linear, neural network, gaussian 
process, descriptor type, etc.)

2. Model Hyperparameters
(# of basis vectors, NN architecture, 
etc.)

3. Model Parameters 
(standard optimization)

4. Fitting Data Generation &  Selection
(Experimental design, active learning)

Two Perspectives

Scientist Perspective:
• Pre-implemented workflows to generate 

well-validated MLIPs that satisfy inputs and 
constraints

• Workflows are automated/semi-automated
Methods Developer Perspective:
• Facilitate the development of new MLIP 

models and/or data selection and fitting 
strategies

• Provide an ability to comparatively 
evaluate different MLIPs and different 
learning strategies 

Primary 
Tasks
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InteratomicPotentials.jl

Feed-Forward Neural 
Networks

Linear Models
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Additivity and Locality Symmetry 
Preserving

MLIPs can model systems with arbitrary number of atoms by decomposing the 
total energy into a sum of atom-wise or pairwise terms. Likewise, they exploit the 
typically local nature of interparticle forces by employing a cutoff function, which 
only considers atoms within some neighborhood 𝒩.	Finally, interatomic potentials 
need to respect the Euclidean group E(3) symmetries (energy invariance and force 
equivariance) and, from a computational perspective, should be invariant to the 
ordering of atoms. 

Atomistic Descriptors (examples below) 

Regression Models (examples below) 

Gaussian Process Regression

PotentialLearning.jl

Smooth Overlap of Atomic Positions (SOAP) 
Descriptors

Atom-centered Symmetry Functions
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Goals Packages Overview

Exampl
es:

Exampl
es:

• Only need to sample a small portion of 
configuration space (i.e., a single minima of the 
PES). 

• However, need high accuracy to capture curvature 
of the minima, which controls thermal properties

• Lower accuracies are acceptable, as the goal 
is down-selection.

• However, need highly sample-efficient 
strategies (i.e., small number of fitting data 
for each material system)

• One possible strategy could be to develop a 
universal MLIP that is subsequently fine-
tuned on specific material systems

• Requires sampling a wide configuration space, including hafnium metal, 
hafnia and related sub-oxides, surfaces and surface adsorption, and 
oxygen gas.

• A major research focus of the CESMIX project

MLIPs are typically developed to model particular material system(s) and specific quantities of interest 
(QoIs), which in turn require modeling different kinds of atomistic environments. Some QoIs require 
diverse atomistic environments, effectively sampling a larger “volume” of configuration space. 
Additionally, it may not be known which environment are relevant a priori, necessitating a generalized 
MLIP. Thus, the choice of material systems and the scope of atomic environments are the primary inputs 
to the MLIP development process, subject to the constraints listed on the right. 

InteratomicPotentials.jl is intended to provide a library of existing MLIPs and classical potentials implemented in Julia, along 
with abstractions that makes it easy to develop and compose new MLIPs. In part, this involves providing implementations of 
different atomistic descriptors (i.e., ways of representing local atomistic environments) that can be fed into different kinds of 
regression models, with the flexibility for users to create their own descriptors and/or regressors. More recent MLIP 
methods that learn descriptors (e.g., graph neural network methods) are an important development target, though they 
likely require a concurrent expansion/improvement of Julia’s machine learning ecosystem. InteratomicPotentials.jl can 
integrate with Molly.jl, a Julia-native MD code, as well as with LAMMPS using the LAMMPS.jl wrapper package, also 
developed as part of CESMIX.
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The PotentialLearning.jl package facilitates the development of MLIPs, including data generation and selection, 
potential fitting, and hyperparameter optimization. It acts as a high-level orchestration script, providing the 
necessary abstractions to key actions like model fitting and data selection that can be stitched together into larger 
workflows like that presented above. As a development goal, this package should provide sufficient flexibility to 
recreate most of the learning strategies that exist in the MLIP literature (including a number of active learning 
variants), while making it easy for users to develop and test new strategies. One important challenge is to ensure 
that workflows like the one above are HPC-compatible, i.e., they can be easily run in an HPC environment in a 
nearly automated fashion. Two strategies are being considered: one approach leverages the Flux resource 
manager via FluxRM.jl; the other uses the AiiDA workflow manager, a package written in python that would 
require some Julia integration, but with key benefits including full provenance tracking and an error management 
& recovery framework. 
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