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German Saltar Rivera: Adjoint-based Training of Embedded Neural-Network Models for
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Precise Dependence Analysis in the Context of DG-FEM on GPUs
Addison J. Alvey-Blanco (Computer Science, UIUC)

for i in range(n):
for j in range(n):

# ...
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I Reduce di�erentiation cost
• Simplicial element cost: O(n2d)
• Tensor-product element cost: O(nd+1)

I Want: further exploitation of the benefits of structures like tensor-product elements
I Need: precise dependency semantics for complex loop tiling strategies
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Scramjet Performance Characterization using Laser Absorption Spectroscopy

▪ Tunable Diode Laser Absorption Spectroscopy sensors 
to characterize facility inflow gas composition and 
measure combustion products downstream

• NO concentration, temperature for inflow gas composition in 
plenum of arc-heater

• CO, CO2 concentration measurements for combustion
performance characterization
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Red Flags for SciML - Casey Lauer
I Machine Learning (ML) surrogate models have been shown to be cheaper replacements

for costly calculations, such as chemical kinetics

I Predictive simulations likely too exercise model beyond training

I Key Concern: Can we know when an ML model might give importantly wrong results?

I New Technique: leave out known physics (e.g., a constraint) in training and use
violations of it as a “red flag” signal the predictions are at risk for being wrong

I Initially implementing the ML model in
a constrained 0D autoignition system

• “Red Flag” Constraint: atom
conservation

• dY
dt = Cŝ

[Esteban Cisneros]
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Adjoint-based Training of Embedded Neural-Network
Models for Particle-laden Turbulence

German Saltar Rivera, Laura Villafañe-Roca, and Jonathan Freund

I A large range of scales makes particle-laden turbulence challenging to simulate
I Embedded ML: a NN term is embedded in the governing equations to account for both

unrepresented physics and disretization errors
I Training based on prediction outcome; discrete-exact adjoints provide gradient of PDE +

NN to optimize weights
I Current demonstration: particle-laden

2D isotropic turbulence
I See poster for results and future plans!
I Looking for internship Summer 2024
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